Metamath Proof Explorer


Theorem letrii

Description: Trichotomy law for 'less than or equal to'. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypotheses lt.1 A
lt.2 B
Assertion letrii A B B A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 2 1 ltnlei B < A ¬ A B
4 2 1 ltlei B < A B A
5 3 4 sylbir ¬ A B B A
6 5 orri A B B A