Metamath Proof Explorer


Theorem letrp1

Description: A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005)

Ref Expression
Assertion letrp1 A B A B A B + 1

Proof

Step Hyp Ref Expression
1 ltp1 B B < B + 1
2 1 adantl A B B < B + 1
3 peano2re B B + 1
4 3 ancli B B B + 1
5 lelttr A B B + 1 A B B < B + 1 A < B + 1
6 5 3expb A B B + 1 A B B < B + 1 A < B + 1
7 4 6 sylan2 A B A B B < B + 1 A < B + 1
8 2 7 mpan2d A B A B A < B + 1
9 8 3impia A B A B A < B + 1
10 ltle A B + 1 A < B + 1 A B + 1
11 3 10 sylan2 A B A < B + 1 A B + 1
12 11 3adant3 A B A B A < B + 1 A B + 1
13 9 12 mpd A B A B A B + 1