Database
GRAPH THEORY
Undirected graphs
Loop-free graphs
lfgredgge2
Next ⟩
lfgrnloop
Metamath Proof Explorer
Ascii
Unicode
Theorem
lfgredgge2
Description:
An edge of a loop-free graph has at least two ends.
(Contributed by
AV
, 23-Feb-2021)
Ref
Expression
Hypotheses
lfuhgrnloopv.i
⊢
I
=
iEdg
⁡
G
lfuhgrnloopv.a
⊢
A
=
dom
⁡
I
lfuhgrnloopv.e
⊢
E
=
x
∈
𝒫
V
|
2
≤
x
Assertion
lfgredgge2
⊢
I
:
A
⟶
E
∧
X
∈
A
→
2
≤
I
⁡
X
Proof
Step
Hyp
Ref
Expression
1
lfuhgrnloopv.i
⊢
I
=
iEdg
⁡
G
2
lfuhgrnloopv.a
⊢
A
=
dom
⁡
I
3
lfuhgrnloopv.e
⊢
E
=
x
∈
𝒫
V
|
2
≤
x
4
eqid
⊢
A
=
A
5
4
3
feq23i
⊢
I
:
A
⟶
E
↔
I
:
A
⟶
x
∈
𝒫
V
|
2
≤
x
6
5
biimpi
⊢
I
:
A
⟶
E
→
I
:
A
⟶
x
∈
𝒫
V
|
2
≤
x
7
6
ffvelrnda
⊢
I
:
A
⟶
E
∧
X
∈
A
→
I
⁡
X
∈
x
∈
𝒫
V
|
2
≤
x
8
fveq2
⊢
y
=
I
⁡
X
→
y
=
I
⁡
X
9
8
breq2d
⊢
y
=
I
⁡
X
→
2
≤
y
↔
2
≤
I
⁡
X
10
fveq2
⊢
x
=
y
→
x
=
y
11
10
breq2d
⊢
x
=
y
→
2
≤
x
↔
2
≤
y
12
11
cbvrabv
⊢
x
∈
𝒫
V
|
2
≤
x
=
y
∈
𝒫
V
|
2
≤
y
13
9
12
elrab2
⊢
I
⁡
X
∈
x
∈
𝒫
V
|
2
≤
x
↔
I
⁡
X
∈
𝒫
V
∧
2
≤
I
⁡
X
14
13
simprbi
⊢
I
⁡
X
∈
x
∈
𝒫
V
|
2
≤
x
→
2
≤
I
⁡
X
15
7
14
syl
⊢
I
:
A
⟶
E
∧
X
∈
A
→
2
≤
I
⁡
X