Metamath Proof Explorer


Theorem lfgredgge2

Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021)

Ref Expression
Hypotheses lfuhgrnloopv.i I = iEdg G
lfuhgrnloopv.a A = dom I
lfuhgrnloopv.e E = x 𝒫 V | 2 x
Assertion lfgredgge2 I : A E X A 2 I X

Proof

Step Hyp Ref Expression
1 lfuhgrnloopv.i I = iEdg G
2 lfuhgrnloopv.a A = dom I
3 lfuhgrnloopv.e E = x 𝒫 V | 2 x
4 eqid A = A
5 4 3 feq23i I : A E I : A x 𝒫 V | 2 x
6 5 biimpi I : A E I : A x 𝒫 V | 2 x
7 6 ffvelrnda I : A E X A I X x 𝒫 V | 2 x
8 fveq2 y = I X y = I X
9 8 breq2d y = I X 2 y 2 I X
10 fveq2 x = y x = y
11 10 breq2d x = y 2 x 2 y
12 11 cbvrabv x 𝒫 V | 2 x = y 𝒫 V | 2 y
13 9 12 elrab2 I X x 𝒫 V | 2 x I X 𝒫 V 2 I X
14 13 simprbi I X x 𝒫 V | 2 x 2 I X
15 7 14 syl I : A E X A 2 I X