Metamath Proof Explorer


Theorem lfgriswlk

Description: Conditions for a pair of functions to be a walk in a loop-free graph. (Contributed by AV, 28-Jan-2021)

Ref Expression
Hypotheses lfgrwlkprop.i I = iEdg G
lfgriswlk.v V = Vtx G
Assertion lfgriswlk G W I : dom I x 𝒫 V | 2 x F Walks G P F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k

Proof

Step Hyp Ref Expression
1 lfgrwlkprop.i I = iEdg G
2 lfgriswlk.v V = Vtx G
3 1 wlkf F Walks G P F Word dom I
4 3 adantl G W I : dom I x 𝒫 V | 2 x F Walks G P F Word dom I
5 2 wlkp F Walks G P P : 0 F V
6 5 adantl G W I : dom I x 𝒫 V | 2 x F Walks G P P : 0 F V
7 1 lfgrwlkprop F Walks G P I : dom I x 𝒫 V | 2 x k 0 ..^ F P k P k + 1
8 7 expcom I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1
9 8 adantl G W I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1
10 9 imp G W I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1
11 1 wlkvtxeledg F Walks G P k 0 ..^ F P k P k + 1 I F k
12 11 adantl G W I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1 I F k
13 r19.26 k 0 ..^ F P k P k + 1 P k P k + 1 I F k k 0 ..^ F P k P k + 1 k 0 ..^ F P k P k + 1 I F k
14 10 12 13 sylanbrc G W I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1 P k P k + 1 I F k
15 4 6 14 3jca G W I : dom I x 𝒫 V | 2 x F Walks G P F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k
16 simpr1 G W I : dom I x 𝒫 V | 2 x F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k F Word dom I
17 simpr2 G W I : dom I x 𝒫 V | 2 x F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k P : 0 F V
18 df-ne P k P k + 1 ¬ P k = P k + 1
19 ifpfal ¬ P k = P k + 1 if- P k = P k + 1 I F k = P k P k P k + 1 I F k P k P k + 1 I F k
20 18 19 sylbi P k P k + 1 if- P k = P k + 1 I F k = P k P k P k + 1 I F k P k P k + 1 I F k
21 20 biimpar P k P k + 1 P k P k + 1 I F k if- P k = P k + 1 I F k = P k P k P k + 1 I F k
22 21 ralimi k 0 ..^ F P k P k + 1 P k P k + 1 I F k k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
23 22 3ad2ant3 F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
24 23 adantl G W I : dom I x 𝒫 V | 2 x F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
25 2 1 iswlkg G W F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
26 25 ad2antrr G W I : dom I x 𝒫 V | 2 x F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
27 16 17 24 26 mpbir3and G W I : dom I x 𝒫 V | 2 x F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k F Walks G P
28 15 27 impbida G W I : dom I x 𝒫 V | 2 x F Walks G P F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k