Database
GRAPH THEORY
Walks, paths and cycles
Walks for loop-free graphs
lfgrwlknloop
Next ⟩
Trails
Metamath Proof Explorer
Ascii
Unicode
Theorem
lfgrwlknloop
Description:
In a loop-free graph, each walk has no loops!
(Contributed by
AV
, 2-Feb-2021)
Ref
Expression
Hypotheses
lfgrwlkprop.i
⊢
I
=
iEdg
⁡
G
lfgriswlk.v
⊢
V
=
Vtx
⁡
G
Assertion
lfgrwlknloop
⊢
I
:
dom
⁡
I
⟶
x
∈
𝒫
V
|
2
≤
x
∧
F
Walks
⁡
G
P
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
Proof
Step
Hyp
Ref
Expression
1
lfgrwlkprop.i
⊢
I
=
iEdg
⁡
G
2
lfgriswlk.v
⊢
V
=
Vtx
⁡
G
3
wlkv
⊢
F
Walks
⁡
G
P
→
G
∈
V
∧
F
∈
V
∧
P
∈
V
4
1
2
lfgriswlk
⊢
G
∈
V
∧
I
:
dom
⁡
I
⟶
x
∈
𝒫
V
|
2
≤
x
→
F
Walks
⁡
G
P
↔
F
∈
Word
dom
⁡
I
∧
P
:
0
…
F
⟶
V
∧
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
∧
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
5
simpl
⊢
P
⁡
k
≠
P
⁡
k
+
1
∧
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
→
P
⁡
k
≠
P
⁡
k
+
1
6
5
ralimi
⊢
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
∧
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
7
6
3ad2ant3
⊢
F
∈
Word
dom
⁡
I
∧
P
:
0
…
F
⟶
V
∧
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
∧
P
⁡
k
P
⁡
k
+
1
⊆
I
⁡
F
⁡
k
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
8
4
7
syl6bi
⊢
G
∈
V
∧
I
:
dom
⁡
I
⟶
x
∈
𝒫
V
|
2
≤
x
→
F
Walks
⁡
G
P
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
9
8
ex
⊢
G
∈
V
→
I
:
dom
⁡
I
⟶
x
∈
𝒫
V
|
2
≤
x
→
F
Walks
⁡
G
P
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
10
9
com23
⊢
G
∈
V
→
F
Walks
⁡
G
P
→
I
:
dom
⁡
I
⟶
x
∈
𝒫
V
|
2
≤
x
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
11
10
3ad2ant1
⊢
G
∈
V
∧
F
∈
V
∧
P
∈
V
→
F
Walks
⁡
G
P
→
I
:
dom
⁡
I
⟶
x
∈
𝒫
V
|
2
≤
x
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
12
3
11
mpcom
⊢
F
Walks
⁡
G
P
→
I
:
dom
⁡
I
⟶
x
∈
𝒫
V
|
2
≤
x
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1
13
12
impcom
⊢
I
:
dom
⁡
I
⟶
x
∈
𝒫
V
|
2
≤
x
∧
F
Walks
⁡
G
P
→
∀
k
∈
0
..^
F
P
⁡
k
≠
P
⁡
k
+
1