Metamath Proof Explorer


Theorem lfgrwlknloop

Description: In a loop-free graph, each walk has no loops! (Contributed by AV, 2-Feb-2021)

Ref Expression
Hypotheses lfgrwlkprop.i I=iEdgG
lfgriswlk.v V=VtxG
Assertion lfgrwlknloop I:domIx𝒫V|2xFWalksGPk0..^FPkPk+1

Proof

Step Hyp Ref Expression
1 lfgrwlkprop.i I=iEdgG
2 lfgriswlk.v V=VtxG
3 wlkv FWalksGPGVFVPV
4 1 2 lfgriswlk GVI:domIx𝒫V|2xFWalksGPFWorddomIP:0FVk0..^FPkPk+1PkPk+1IFk
5 simpl PkPk+1PkPk+1IFkPkPk+1
6 5 ralimi k0..^FPkPk+1PkPk+1IFkk0..^FPkPk+1
7 6 3ad2ant3 FWorddomIP:0FVk0..^FPkPk+1PkPk+1IFkk0..^FPkPk+1
8 4 7 syl6bi GVI:domIx𝒫V|2xFWalksGPk0..^FPkPk+1
9 8 ex GVI:domIx𝒫V|2xFWalksGPk0..^FPkPk+1
10 9 com23 GVFWalksGPI:domIx𝒫V|2xk0..^FPkPk+1
11 10 3ad2ant1 GVFVPVFWalksGPI:domIx𝒫V|2xk0..^FPkPk+1
12 3 11 mpcom FWalksGPI:domIx𝒫V|2xk0..^FPkPk+1
13 12 impcom I:domIx𝒫V|2xFWalksGPk0..^FPkPk+1