Metamath Proof Explorer


Theorem lgscl2

Description: The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgscl2.z Z = x | x 1
Assertion lgscl2 A N A / L N Z

Proof

Step Hyp Ref Expression
1 lgscl2.z Z = x | x 1
2 eqid n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
3 2 1 lgscllem A N A / L N Z