Step |
Hyp |
Ref |
Expression |
1 |
|
3anrot |
|
2 |
|
lgsdilem |
|
3 |
1 2
|
sylanb |
|
4 |
|
ancom |
|
5 |
|
ifbi |
|
6 |
4 5
|
ax-mp |
|
7 |
|
ancom |
|
8 |
|
ifbi |
|
9 |
7 8
|
ax-mp |
|
10 |
|
ancom |
|
11 |
|
ifbi |
|
12 |
10 11
|
ax-mp |
|
13 |
9 12
|
oveq12i |
|
14 |
3 6 13
|
3eqtr4g |
|
15 |
|
simpl2 |
|
16 |
|
simpl3 |
|
17 |
15 16
|
zmulcld |
|
18 |
15
|
zcnd |
|
19 |
16
|
zcnd |
|
20 |
|
simprl |
|
21 |
|
simprr |
|
22 |
18 19 20 21
|
mulne0d |
|
23 |
|
nnabscl |
|
24 |
17 22 23
|
syl2anc |
|
25 |
|
nnuz |
|
26 |
24 25
|
eleqtrdi |
|
27 |
|
simpl1 |
|
28 |
|
eqid |
|
29 |
28
|
lgsfcl3 |
|
30 |
27 15 20 29
|
syl3anc |
|
31 |
|
elfznn |
|
32 |
|
ffvelrn |
|
33 |
30 31 32
|
syl2an |
|
34 |
33
|
zcnd |
|
35 |
|
eqid |
|
36 |
35
|
lgsfcl3 |
|
37 |
27 16 21 36
|
syl3anc |
|
38 |
|
ffvelrn |
|
39 |
37 31 38
|
syl2an |
|
40 |
39
|
zcnd |
|
41 |
|
simpr |
|
42 |
15
|
ad2antrr |
|
43 |
20
|
ad2antrr |
|
44 |
16
|
ad2antrr |
|
45 |
21
|
ad2antrr |
|
46 |
|
pcmul |
|
47 |
41 42 43 44 45 46
|
syl122anc |
|
48 |
47
|
oveq2d |
|
49 |
27
|
ad2antrr |
|
50 |
|
prmz |
|
51 |
50
|
adantl |
|
52 |
|
lgscl |
|
53 |
49 51 52
|
syl2anc |
|
54 |
53
|
zcnd |
|
55 |
|
pczcl |
|
56 |
41 44 45 55
|
syl12anc |
|
57 |
|
pczcl |
|
58 |
41 42 43 57
|
syl12anc |
|
59 |
54 56 58
|
expaddd |
|
60 |
48 59
|
eqtrd |
|
61 |
|
iftrue |
|
62 |
61
|
adantl |
|
63 |
|
iftrue |
|
64 |
|
iftrue |
|
65 |
63 64
|
oveq12d |
|
66 |
65
|
adantl |
|
67 |
60 62 66
|
3eqtr4rd |
|
68 |
|
1t1e1 |
|
69 |
|
iffalse |
|
70 |
|
iffalse |
|
71 |
69 70
|
oveq12d |
|
72 |
|
iffalse |
|
73 |
68 71 72
|
3eqtr4a |
|
74 |
73
|
adantl |
|
75 |
67 74
|
pm2.61dan |
|
76 |
31
|
adantl |
|
77 |
|
eleq1w |
|
78 |
|
oveq2 |
|
79 |
|
oveq1 |
|
80 |
78 79
|
oveq12d |
|
81 |
77 80
|
ifbieq1d |
|
82 |
|
ovex |
|
83 |
|
1ex |
|
84 |
82 83
|
ifex |
|
85 |
81 28 84
|
fvmpt |
|
86 |
|
oveq1 |
|
87 |
78 86
|
oveq12d |
|
88 |
77 87
|
ifbieq1d |
|
89 |
|
ovex |
|
90 |
89 83
|
ifex |
|
91 |
88 35 90
|
fvmpt |
|
92 |
85 91
|
oveq12d |
|
93 |
76 92
|
syl |
|
94 |
|
oveq1 |
|
95 |
78 94
|
oveq12d |
|
96 |
77 95
|
ifbieq1d |
|
97 |
|
eqid |
|
98 |
|
ovex |
|
99 |
98 83
|
ifex |
|
100 |
96 97 99
|
fvmpt |
|
101 |
76 100
|
syl |
|
102 |
75 93 101
|
3eqtr4rd |
|
103 |
26 34 40 102
|
prodfmul |
|
104 |
27 15 16 20 21 28
|
lgsdilem2 |
|
105 |
27 16 15 21 20 35
|
lgsdilem2 |
|
106 |
18 19
|
mulcomd |
|
107 |
106
|
fveq2d |
|
108 |
107
|
fveq2d |
|
109 |
105 108
|
eqtr4d |
|
110 |
104 109
|
oveq12d |
|
111 |
103 110
|
eqtr4d |
|
112 |
14 111
|
oveq12d |
|
113 |
97
|
lgsval4 |
|
114 |
27 17 22 113
|
syl3anc |
|
115 |
28
|
lgsval4 |
|
116 |
27 15 20 115
|
syl3anc |
|
117 |
35
|
lgsval4 |
|
118 |
27 16 21 117
|
syl3anc |
|
119 |
116 118
|
oveq12d |
|
120 |
|
neg1cn |
|
121 |
|
ax-1cn |
|
122 |
120 121
|
ifcli |
|
123 |
122
|
a1i |
|
124 |
|
nnabscl |
|
125 |
15 20 124
|
syl2anc |
|
126 |
125 25
|
eleqtrdi |
|
127 |
|
elfznn |
|
128 |
30 127 32
|
syl2an |
|
129 |
128
|
zcnd |
|
130 |
|
mulcl |
|
131 |
130
|
adantl |
|
132 |
126 129 131
|
seqcl |
|
133 |
120 121
|
ifcli |
|
134 |
133
|
a1i |
|
135 |
|
nnabscl |
|
136 |
16 21 135
|
syl2anc |
|
137 |
136 25
|
eleqtrdi |
|
138 |
|
elfznn |
|
139 |
37 138 38
|
syl2an |
|
140 |
139
|
zcnd |
|
141 |
137 140 131
|
seqcl |
|
142 |
123 132 134 141
|
mul4d |
|
143 |
119 142
|
eqtrd |
|
144 |
112 114 143
|
3eqtr4d |
|