| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
oveq1d |
|
| 3 |
2
|
eqeq2d |
|
| 4 |
|
sq1 |
|
| 5 |
4
|
eqeq2i |
|
| 6 |
|
nn0re |
|
| 7 |
|
nn0ge0 |
|
| 8 |
|
1re |
|
| 9 |
|
0le1 |
|
| 10 |
|
sq11 |
|
| 11 |
8 9 10
|
mpanr12 |
|
| 12 |
6 7 11
|
syl2anc |
|
| 13 |
12
|
adantr |
|
| 14 |
5 13
|
bitr3id |
|
| 15 |
14
|
biimpa |
|
| 16 |
15
|
oveq1d |
|
| 17 |
|
1lgs |
|
| 18 |
17
|
ad2antlr |
|
| 19 |
16 18
|
eqtrd |
|
| 20 |
19
|
oveq1d |
|
| 21 |
|
nn0z |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
|
0z |
|
| 24 |
|
lgscl |
|
| 25 |
22 23 24
|
sylancl |
|
| 26 |
25
|
zcnd |
|
| 27 |
26
|
mullidd |
|
| 28 |
20 27
|
eqtr2d |
|
| 29 |
|
lgscl |
|
| 30 |
21 29
|
sylan |
|
| 31 |
30
|
zcnd |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
mul01d |
|
| 34 |
21
|
adantr |
|
| 35 |
|
lgs0 |
|
| 36 |
34 35
|
syl |
|
| 37 |
|
ifnefalse |
|
| 38 |
36 37
|
sylan9eq |
|
| 39 |
38
|
oveq2d |
|
| 40 |
33 39 38
|
3eqtr4rd |
|
| 41 |
28 40
|
pm2.61dane |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
42
|
3ad2ant1 |
|
| 44 |
|
simp3 |
|
| 45 |
3 43 44
|
rspcdva |
|
| 46 |
45
|
adantr |
|
| 47 |
21
|
3ad2ant1 |
|
| 48 |
47 23 24
|
sylancl |
|
| 49 |
48
|
zcnd |
|
| 50 |
49
|
adantr |
|
| 51 |
|
lgscl |
|
| 52 |
47 44 51
|
syl2anc |
|
| 53 |
52
|
zcnd |
|
| 54 |
53
|
adantr |
|
| 55 |
50 54
|
mulcomd |
|
| 56 |
46 55
|
eqtr4d |
|
| 57 |
|
oveq1 |
|
| 58 |
44
|
zcnd |
|
| 59 |
58
|
mul02d |
|
| 60 |
57 59
|
sylan9eqr |
|
| 61 |
60
|
oveq2d |
|
| 62 |
|
simpr |
|
| 63 |
62
|
oveq2d |
|
| 64 |
63
|
oveq1d |
|
| 65 |
56 61 64
|
3eqtr4d |
|
| 66 |
|
oveq2 |
|
| 67 |
66
|
oveq1d |
|
| 68 |
67
|
eqeq2d |
|
| 69 |
|
simp2 |
|
| 70 |
68 43 69
|
rspcdva |
|
| 71 |
70
|
adantr |
|
| 72 |
|
oveq2 |
|
| 73 |
69
|
zcnd |
|
| 74 |
73
|
mul01d |
|
| 75 |
72 74
|
sylan9eqr |
|
| 76 |
75
|
oveq2d |
|
| 77 |
|
simpr |
|
| 78 |
77
|
oveq2d |
|
| 79 |
78
|
oveq2d |
|
| 80 |
71 76 79
|
3eqtr4d |
|
| 81 |
|
lgsdi |
|
| 82 |
21 81
|
syl3anl1 |
|
| 83 |
65 80 82
|
pm2.61da2ne |
|