Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq1d |
|
3 |
2
|
eqeq2d |
|
4 |
|
sq1 |
|
5 |
4
|
eqeq2i |
|
6 |
|
nn0re |
|
7 |
|
nn0ge0 |
|
8 |
|
1re |
|
9 |
|
0le1 |
|
10 |
|
sq11 |
|
11 |
8 9 10
|
mpanr12 |
|
12 |
6 7 11
|
syl2anc |
|
13 |
12
|
adantr |
|
14 |
5 13
|
bitr3id |
|
15 |
14
|
biimpa |
|
16 |
15
|
oveq1d |
|
17 |
|
1lgs |
|
18 |
17
|
ad2antlr |
|
19 |
16 18
|
eqtrd |
|
20 |
19
|
oveq1d |
|
21 |
|
nn0z |
|
22 |
21
|
ad2antrr |
|
23 |
|
0z |
|
24 |
|
lgscl |
|
25 |
22 23 24
|
sylancl |
|
26 |
25
|
zcnd |
|
27 |
26
|
mulid2d |
|
28 |
20 27
|
eqtr2d |
|
29 |
|
lgscl |
|
30 |
21 29
|
sylan |
|
31 |
30
|
zcnd |
|
32 |
31
|
adantr |
|
33 |
32
|
mul01d |
|
34 |
21
|
adantr |
|
35 |
|
lgs0 |
|
36 |
34 35
|
syl |
|
37 |
|
ifnefalse |
|
38 |
36 37
|
sylan9eq |
|
39 |
38
|
oveq2d |
|
40 |
33 39 38
|
3eqtr4rd |
|
41 |
28 40
|
pm2.61dane |
|
42 |
41
|
ralrimiva |
|
43 |
42
|
3ad2ant1 |
|
44 |
|
simp3 |
|
45 |
3 43 44
|
rspcdva |
|
46 |
45
|
adantr |
|
47 |
21
|
3ad2ant1 |
|
48 |
47 23 24
|
sylancl |
|
49 |
48
|
zcnd |
|
50 |
49
|
adantr |
|
51 |
|
lgscl |
|
52 |
47 44 51
|
syl2anc |
|
53 |
52
|
zcnd |
|
54 |
53
|
adantr |
|
55 |
50 54
|
mulcomd |
|
56 |
46 55
|
eqtr4d |
|
57 |
|
oveq1 |
|
58 |
44
|
zcnd |
|
59 |
58
|
mul02d |
|
60 |
57 59
|
sylan9eqr |
|
61 |
60
|
oveq2d |
|
62 |
|
simpr |
|
63 |
62
|
oveq2d |
|
64 |
63
|
oveq1d |
|
65 |
56 61 64
|
3eqtr4d |
|
66 |
|
oveq2 |
|
67 |
66
|
oveq1d |
|
68 |
67
|
eqeq2d |
|
69 |
|
simp2 |
|
70 |
68 43 69
|
rspcdva |
|
71 |
70
|
adantr |
|
72 |
|
oveq2 |
|
73 |
69
|
zcnd |
|
74 |
73
|
mul01d |
|
75 |
72 74
|
sylan9eqr |
|
76 |
75
|
oveq2d |
|
77 |
|
simpr |
|
78 |
77
|
oveq2d |
|
79 |
78
|
oveq2d |
|
80 |
71 76 79
|
3eqtr4d |
|
81 |
|
lgsdi |
|
82 |
21 81
|
syl3anl1 |
|
83 |
65 80 82
|
pm2.61da2ne |
|