Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
1
|
oveq1d |
|
3 |
2
|
eqeq2d |
|
4 |
|
id |
|
5 |
|
nn0z |
|
6 |
|
lgscl |
|
7 |
4 5 6
|
syl2anr |
|
8 |
7
|
zcnd |
|
9 |
8
|
adantr |
|
10 |
9
|
mul01d |
|
11 |
|
simpr |
|
12 |
11
|
oveq2d |
|
13 |
10 12 11
|
3eqtr4rd |
|
14 |
|
0z |
|
15 |
5
|
adantr |
|
16 |
|
lgsne0 |
|
17 |
14 15 16
|
sylancr |
|
18 |
|
gcdcom |
|
19 |
14 15 18
|
sylancr |
|
20 |
|
nn0gcdid0 |
|
21 |
20
|
adantr |
|
22 |
19 21
|
eqtrd |
|
23 |
22
|
eqeq1d |
|
24 |
|
lgs1 |
|
25 |
24
|
adantl |
|
26 |
|
oveq2 |
|
27 |
26
|
eqeq1d |
|
28 |
25 27
|
syl5ibrcom |
|
29 |
23 28
|
sylbid |
|
30 |
17 29
|
sylbid |
|
31 |
30
|
imp |
|
32 |
31
|
oveq1d |
|
33 |
5
|
ad2antrr |
|
34 |
|
lgscl |
|
35 |
14 33 34
|
sylancr |
|
36 |
35
|
zcnd |
|
37 |
36
|
mulid2d |
|
38 |
32 37
|
eqtr2d |
|
39 |
13 38
|
pm2.61dane |
|
40 |
39
|
ralrimiva |
|
41 |
40
|
3ad2ant3 |
|
42 |
|
simp2 |
|
43 |
3 41 42
|
rspcdva |
|
44 |
43
|
adantr |
|
45 |
5
|
3ad2ant3 |
|
46 |
14 45 34
|
sylancr |
|
47 |
46
|
zcnd |
|
48 |
47
|
adantr |
|
49 |
|
lgscl |
|
50 |
42 45 49
|
syl2anc |
|
51 |
50
|
zcnd |
|
52 |
51
|
adantr |
|
53 |
48 52
|
mulcomd |
|
54 |
44 53
|
eqtr4d |
|
55 |
|
oveq1 |
|
56 |
|
zcn |
|
57 |
56
|
3ad2ant2 |
|
58 |
57
|
mul02d |
|
59 |
55 58
|
sylan9eqr |
|
60 |
59
|
oveq1d |
|
61 |
|
simpr |
|
62 |
61
|
oveq1d |
|
63 |
62
|
oveq1d |
|
64 |
54 60 63
|
3eqtr4d |
|
65 |
|
oveq1 |
|
66 |
65
|
oveq1d |
|
67 |
66
|
eqeq2d |
|
68 |
|
simp1 |
|
69 |
67 41 68
|
rspcdva |
|
70 |
69
|
adantr |
|
71 |
|
oveq2 |
|
72 |
68
|
zcnd |
|
73 |
72
|
mul01d |
|
74 |
71 73
|
sylan9eqr |
|
75 |
74
|
oveq1d |
|
76 |
|
simpr |
|
77 |
76
|
oveq1d |
|
78 |
77
|
oveq2d |
|
79 |
70 75 78
|
3eqtr4d |
|
80 |
|
lgsdir |
|
81 |
5 80
|
syl3anl3 |
|
82 |
64 79 81
|
pm2.61da2ne |
|