| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
1
|
oveq1d |
|
| 3 |
2
|
eqeq2d |
|
| 4 |
|
id |
|
| 5 |
|
nn0z |
|
| 6 |
|
lgscl |
|
| 7 |
4 5 6
|
syl2anr |
|
| 8 |
7
|
zcnd |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
mul01d |
|
| 11 |
|
simpr |
|
| 12 |
11
|
oveq2d |
|
| 13 |
10 12 11
|
3eqtr4rd |
|
| 14 |
|
0z |
|
| 15 |
5
|
adantr |
|
| 16 |
|
lgsne0 |
|
| 17 |
14 15 16
|
sylancr |
|
| 18 |
|
gcdcom |
|
| 19 |
14 15 18
|
sylancr |
|
| 20 |
|
nn0gcdid0 |
|
| 21 |
20
|
adantr |
|
| 22 |
19 21
|
eqtrd |
|
| 23 |
22
|
eqeq1d |
|
| 24 |
|
lgs1 |
|
| 25 |
24
|
adantl |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
25 27
|
syl5ibrcom |
|
| 29 |
23 28
|
sylbid |
|
| 30 |
17 29
|
sylbid |
|
| 31 |
30
|
imp |
|
| 32 |
31
|
oveq1d |
|
| 33 |
5
|
ad2antrr |
|
| 34 |
|
lgscl |
|
| 35 |
14 33 34
|
sylancr |
|
| 36 |
35
|
zcnd |
|
| 37 |
36
|
mullidd |
|
| 38 |
32 37
|
eqtr2d |
|
| 39 |
13 38
|
pm2.61dane |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
40
|
3ad2ant3 |
|
| 42 |
|
simp2 |
|
| 43 |
3 41 42
|
rspcdva |
|
| 44 |
43
|
adantr |
|
| 45 |
5
|
3ad2ant3 |
|
| 46 |
14 45 34
|
sylancr |
|
| 47 |
46
|
zcnd |
|
| 48 |
47
|
adantr |
|
| 49 |
|
lgscl |
|
| 50 |
42 45 49
|
syl2anc |
|
| 51 |
50
|
zcnd |
|
| 52 |
51
|
adantr |
|
| 53 |
48 52
|
mulcomd |
|
| 54 |
44 53
|
eqtr4d |
|
| 55 |
|
oveq1 |
|
| 56 |
|
zcn |
|
| 57 |
56
|
3ad2ant2 |
|
| 58 |
57
|
mul02d |
|
| 59 |
55 58
|
sylan9eqr |
|
| 60 |
59
|
oveq1d |
|
| 61 |
|
simpr |
|
| 62 |
61
|
oveq1d |
|
| 63 |
62
|
oveq1d |
|
| 64 |
54 60 63
|
3eqtr4d |
|
| 65 |
|
oveq1 |
|
| 66 |
65
|
oveq1d |
|
| 67 |
66
|
eqeq2d |
|
| 68 |
|
simp1 |
|
| 69 |
67 41 68
|
rspcdva |
|
| 70 |
69
|
adantr |
|
| 71 |
|
oveq2 |
|
| 72 |
68
|
zcnd |
|
| 73 |
72
|
mul01d |
|
| 74 |
71 73
|
sylan9eqr |
|
| 75 |
74
|
oveq1d |
|
| 76 |
|
simpr |
|
| 77 |
76
|
oveq1d |
|
| 78 |
77
|
oveq2d |
|
| 79 |
70 75 78
|
3eqtr4d |
|
| 80 |
|
lgsdir |
|
| 81 |
5 80
|
syl3anl3 |
|
| 82 |
64 79 81
|
pm2.61da2ne |
|