Metamath Proof Explorer


Theorem lgsdirnn0

Description: Variation on lgsdir valid for all A , B but only for positive N . (The exact location of the failure of this law is for A = 0 , B < 0 , N = -u 1 in which case ( 0 /L -u 1 ) = 1 but ( B /L -u 1 ) = -u 1 .) (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Assertion lgsdirnn0 A B N 0 A B / L N = A / L N B / L N

Proof

Step Hyp Ref Expression
1 oveq1 x = B x / L N = B / L N
2 1 oveq1d x = B x / L N 0 / L N = B / L N 0 / L N
3 2 eqeq2d x = B 0 / L N = x / L N 0 / L N 0 / L N = B / L N 0 / L N
4 id x x
5 nn0z N 0 N
6 lgscl x N x / L N
7 4 5 6 syl2anr N 0 x x / L N
8 7 zcnd N 0 x x / L N
9 8 adantr N 0 x 0 / L N = 0 x / L N
10 9 mul01d N 0 x 0 / L N = 0 x / L N 0 = 0
11 simpr N 0 x 0 / L N = 0 0 / L N = 0
12 11 oveq2d N 0 x 0 / L N = 0 x / L N 0 / L N = x / L N 0
13 10 12 11 3eqtr4rd N 0 x 0 / L N = 0 0 / L N = x / L N 0 / L N
14 0z 0
15 5 adantr N 0 x N
16 lgsne0 0 N 0 / L N 0 0 gcd N = 1
17 14 15 16 sylancr N 0 x 0 / L N 0 0 gcd N = 1
18 gcdcom 0 N 0 gcd N = N gcd 0
19 14 15 18 sylancr N 0 x 0 gcd N = N gcd 0
20 nn0gcdid0 N 0 N gcd 0 = N
21 20 adantr N 0 x N gcd 0 = N
22 19 21 eqtrd N 0 x 0 gcd N = N
23 22 eqeq1d N 0 x 0 gcd N = 1 N = 1
24 lgs1 x x / L 1 = 1
25 24 adantl N 0 x x / L 1 = 1
26 oveq2 N = 1 x / L N = x / L 1
27 26 eqeq1d N = 1 x / L N = 1 x / L 1 = 1
28 25 27 syl5ibrcom N 0 x N = 1 x / L N = 1
29 23 28 sylbid N 0 x 0 gcd N = 1 x / L N = 1
30 17 29 sylbid N 0 x 0 / L N 0 x / L N = 1
31 30 imp N 0 x 0 / L N 0 x / L N = 1
32 31 oveq1d N 0 x 0 / L N 0 x / L N 0 / L N = 1 0 / L N
33 5 ad2antrr N 0 x 0 / L N 0 N
34 lgscl 0 N 0 / L N
35 14 33 34 sylancr N 0 x 0 / L N 0 0 / L N
36 35 zcnd N 0 x 0 / L N 0 0 / L N
37 36 mulid2d N 0 x 0 / L N 0 1 0 / L N = 0 / L N
38 32 37 eqtr2d N 0 x 0 / L N 0 0 / L N = x / L N 0 / L N
39 13 38 pm2.61dane N 0 x 0 / L N = x / L N 0 / L N
40 39 ralrimiva N 0 x 0 / L N = x / L N 0 / L N
41 40 3ad2ant3 A B N 0 x 0 / L N = x / L N 0 / L N
42 simp2 A B N 0 B
43 3 41 42 rspcdva A B N 0 0 / L N = B / L N 0 / L N
44 43 adantr A B N 0 A = 0 0 / L N = B / L N 0 / L N
45 5 3ad2ant3 A B N 0 N
46 14 45 34 sylancr A B N 0 0 / L N
47 46 zcnd A B N 0 0 / L N
48 47 adantr A B N 0 A = 0 0 / L N
49 lgscl B N B / L N
50 42 45 49 syl2anc A B N 0 B / L N
51 50 zcnd A B N 0 B / L N
52 51 adantr A B N 0 A = 0 B / L N
53 48 52 mulcomd A B N 0 A = 0 0 / L N B / L N = B / L N 0 / L N
54 44 53 eqtr4d A B N 0 A = 0 0 / L N = 0 / L N B / L N
55 oveq1 A = 0 A B = 0 B
56 zcn B B
57 56 3ad2ant2 A B N 0 B
58 57 mul02d A B N 0 0 B = 0
59 55 58 sylan9eqr A B N 0 A = 0 A B = 0
60 59 oveq1d A B N 0 A = 0 A B / L N = 0 / L N
61 simpr A B N 0 A = 0 A = 0
62 61 oveq1d A B N 0 A = 0 A / L N = 0 / L N
63 62 oveq1d A B N 0 A = 0 A / L N B / L N = 0 / L N B / L N
64 54 60 63 3eqtr4d A B N 0 A = 0 A B / L N = A / L N B / L N
65 oveq1 x = A x / L N = A / L N
66 65 oveq1d x = A x / L N 0 / L N = A / L N 0 / L N
67 66 eqeq2d x = A 0 / L N = x / L N 0 / L N 0 / L N = A / L N 0 / L N
68 simp1 A B N 0 A
69 67 41 68 rspcdva A B N 0 0 / L N = A / L N 0 / L N
70 69 adantr A B N 0 B = 0 0 / L N = A / L N 0 / L N
71 oveq2 B = 0 A B = A 0
72 68 zcnd A B N 0 A
73 72 mul01d A B N 0 A 0 = 0
74 71 73 sylan9eqr A B N 0 B = 0 A B = 0
75 74 oveq1d A B N 0 B = 0 A B / L N = 0 / L N
76 simpr A B N 0 B = 0 B = 0
77 76 oveq1d A B N 0 B = 0 B / L N = 0 / L N
78 77 oveq2d A B N 0 B = 0 A / L N B / L N = A / L N 0 / L N
79 70 75 78 3eqtr4d A B N 0 B = 0 A B / L N = A / L N B / L N
80 lgsdir A B N A 0 B 0 A B / L N = A / L N B / L N
81 5 80 syl3anl3 A B N 0 A 0 B 0 A B / L N = A / L N B / L N
82 64 79 81 pm2.61da2ne A B N 0 A B / L N = A / L N B / L N