Metamath Proof Explorer


Theorem lgseisenlem1

Description: Lemma for lgseisen . If R ( u ) = ( Q x. u ) mod P and M ( u ) = ( -u 1 ^ R ( u ) ) x. R ( u ) , then for any even 1 <_ u <_ P - 1 , M ( u ) is also an even integer 1 <_ M ( u ) <_ P - 1 . To simplify these statements, we divide all the even numbers by 2 , so that it becomes the statement that M ( x / 2 ) = ( -u 1 ^ R ( x / 2 ) ) x. R ( x / 2 ) / 2 is an integer between 1 and ( P - 1 ) / 2 . (Contributed by Mario Carneiro, 17-Jun-2015)

Ref Expression
Hypotheses lgseisen.1 φ P 2
lgseisen.2 φ Q 2
lgseisen.3 φ P Q
lgseisen.4 R = Q 2 x mod P
lgseisen.5 M = x 1 P 1 2 1 R R mod P 2
Assertion lgseisenlem1 φ M : 1 P 1 2 1 P 1 2

Proof

Step Hyp Ref Expression
1 lgseisen.1 φ P 2
2 lgseisen.2 φ Q 2
3 lgseisen.3 φ P Q
4 lgseisen.4 R = Q 2 x mod P
5 lgseisen.5 M = x 1 P 1 2 1 R R mod P 2
6 neg1cn 1
7 6 a1i φ x 1 P 1 2 R 2 1
8 neg1ne0 1 0
9 8 a1i φ x 1 P 1 2 R 2 1 0
10 2z 2
11 10 a1i φ x 1 P 1 2 R 2 2
12 simpr φ x 1 P 1 2 R 2 R 2
13 expmulz 1 1 0 2 R 2 1 2 R 2 = -1 2 R 2
14 7 9 11 12 13 syl22anc φ x 1 P 1 2 R 2 1 2 R 2 = -1 2 R 2
15 2 adantr φ x 1 P 1 2 Q 2
16 15 eldifad φ x 1 P 1 2 Q
17 prmz Q Q
18 16 17 syl φ x 1 P 1 2 Q
19 elfzelz x 1 P 1 2 x
20 19 adantl φ x 1 P 1 2 x
21 zmulcl 2 x 2 x
22 10 20 21 sylancr φ x 1 P 1 2 2 x
23 18 22 zmulcld φ x 1 P 1 2 Q 2 x
24 1 adantr φ x 1 P 1 2 P 2
25 24 eldifad φ x 1 P 1 2 P
26 prmnn P P
27 25 26 syl φ x 1 P 1 2 P
28 zmodfz Q 2 x P Q 2 x mod P 0 P 1
29 23 27 28 syl2anc φ x 1 P 1 2 Q 2 x mod P 0 P 1
30 4 29 eqeltrid φ x 1 P 1 2 R 0 P 1
31 elfznn0 R 0 P 1 R 0
32 30 31 syl φ x 1 P 1 2 R 0
33 32 nn0zd φ x 1 P 1 2 R
34 33 zcnd φ x 1 P 1 2 R
35 34 adantr φ x 1 P 1 2 R 2 R
36 2cnd φ x 1 P 1 2 R 2 2
37 2ne0 2 0
38 37 a1i φ x 1 P 1 2 R 2 2 0
39 35 36 38 divcan2d φ x 1 P 1 2 R 2 2 R 2 = R
40 39 oveq2d φ x 1 P 1 2 R 2 1 2 R 2 = 1 R
41 neg1sqe1 1 2 = 1
42 41 oveq1i -1 2 R 2 = 1 R 2
43 1exp R 2 1 R 2 = 1
44 43 adantl φ x 1 P 1 2 R 2 1 R 2 = 1
45 42 44 syl5eq φ x 1 P 1 2 R 2 -1 2 R 2 = 1
46 14 40 45 3eqtr3d φ x 1 P 1 2 R 2 1 R = 1
47 46 oveq1d φ x 1 P 1 2 R 2 1 R R = 1 R
48 35 mulid2d φ x 1 P 1 2 R 2 1 R = R
49 47 48 eqtrd φ x 1 P 1 2 R 2 1 R R = R
50 49 oveq1d φ x 1 P 1 2 R 2 1 R R mod P = R mod P
51 32 nn0red φ x 1 P 1 2 R
52 27 nnrpd φ x 1 P 1 2 P +
53 32 nn0ge0d φ x 1 P 1 2 0 R
54 23 zred φ x 1 P 1 2 Q 2 x
55 modlt Q 2 x P + Q 2 x mod P < P
56 54 52 55 syl2anc φ x 1 P 1 2 Q 2 x mod P < P
57 4 56 eqbrtrid φ x 1 P 1 2 R < P
58 modid R P + 0 R R < P R mod P = R
59 51 52 53 57 58 syl22anc φ x 1 P 1 2 R mod P = R
60 59 adantr φ x 1 P 1 2 R 2 R mod P = R
61 50 60 eqtrd φ x 1 P 1 2 R 2 1 R R mod P = R
62 61 oveq1d φ x 1 P 1 2 R 2 1 R R mod P 2 = R 2
63 62 12 eqeltrd φ x 1 P 1 2 R 2 1 R R mod P 2
64 27 nncnd φ x 1 P 1 2 P
65 64 mulid2d φ x 1 P 1 2 1 P = P
66 65 oveq2d φ x 1 P 1 2 - R + 1 P = - R + P
67 51 renegcld φ x 1 P 1 2 R
68 67 recnd φ x 1 P 1 2 R
69 64 68 addcomd φ x 1 P 1 2 P + R = - R + P
70 64 34 negsubd φ x 1 P 1 2 P + R = P R
71 66 69 70 3eqtr2d φ x 1 P 1 2 - R + 1 P = P R
72 71 oveq1d φ x 1 P 1 2 - R + 1 P mod P = P R mod P
73 1zzd φ x 1 P 1 2 1
74 modcyc R P + 1 - R + 1 P mod P = R mod P
75 67 52 73 74 syl3anc φ x 1 P 1 2 - R + 1 P mod P = R mod P
76 27 nnred φ x 1 P 1 2 P
77 76 51 resubcld φ x 1 P 1 2 P R
78 51 76 57 ltled φ x 1 P 1 2 R P
79 76 51 subge0d φ x 1 P 1 2 0 P R R P
80 78 79 mpbird φ x 1 P 1 2 0 P R
81 2nn 2
82 elfznn x 1 P 1 2 x
83 82 adantl φ x 1 P 1 2 x
84 nnmulcl 2 x 2 x
85 81 83 84 sylancr φ x 1 P 1 2 2 x
86 elfzle2 x 1 P 1 2 x P 1 2
87 86 adantl φ x 1 P 1 2 x P 1 2
88 83 nnred φ x 1 P 1 2 x
89 prmuz2 P P 2
90 uz2m1nn P 2 P 1
91 25 89 90 3syl φ x 1 P 1 2 P 1
92 91 nnred φ x 1 P 1 2 P 1
93 2re 2
94 93 a1i φ x 1 P 1 2 2
95 2pos 0 < 2
96 95 a1i φ x 1 P 1 2 0 < 2
97 lemuldiv2 x P 1 2 0 < 2 2 x P 1 x P 1 2
98 88 92 94 96 97 syl112anc φ x 1 P 1 2 2 x P 1 x P 1 2
99 87 98 mpbird φ x 1 P 1 2 2 x P 1
100 prmz P P
101 25 100 syl φ x 1 P 1 2 P
102 peano2zm P P 1
103 fznn P 1 2 x 1 P 1 2 x 2 x P 1
104 101 102 103 3syl φ x 1 P 1 2 2 x 1 P 1 2 x 2 x P 1
105 85 99 104 mpbir2and φ x 1 P 1 2 2 x 1 P 1
106 fzm1ndvds P 2 x 1 P 1 ¬ P 2 x
107 27 105 106 syl2anc φ x 1 P 1 2 ¬ P 2 x
108 3 adantr φ x 1 P 1 2 P Q
109 prmrp P Q P gcd Q = 1 P Q
110 25 16 109 syl2anc φ x 1 P 1 2 P gcd Q = 1 P Q
111 108 110 mpbird φ x 1 P 1 2 P gcd Q = 1
112 coprmdvds P Q 2 x P Q 2 x P gcd Q = 1 P 2 x
113 101 18 22 112 syl3anc φ x 1 P 1 2 P Q 2 x P gcd Q = 1 P 2 x
114 111 113 mpan2d φ x 1 P 1 2 P Q 2 x P 2 x
115 107 114 mtod φ x 1 P 1 2 ¬ P Q 2 x
116 dvdsval3 P Q 2 x P Q 2 x Q 2 x mod P = 0
117 27 23 116 syl2anc φ x 1 P 1 2 P Q 2 x Q 2 x mod P = 0
118 115 117 mtbid φ x 1 P 1 2 ¬ Q 2 x mod P = 0
119 4 eqeq1i R = 0 Q 2 x mod P = 0
120 118 119 sylnibr φ x 1 P 1 2 ¬ R = 0
121 91 nnnn0d φ x 1 P 1 2 P 1 0
122 nn0uz 0 = 0
123 121 122 eleqtrdi φ x 1 P 1 2 P 1 0
124 elfzp12 P 1 0 R 0 P 1 R = 0 R 0 + 1 P 1
125 123 124 syl φ x 1 P 1 2 R 0 P 1 R = 0 R 0 + 1 P 1
126 30 125 mpbid φ x 1 P 1 2 R = 0 R 0 + 1 P 1
127 126 ord φ x 1 P 1 2 ¬ R = 0 R 0 + 1 P 1
128 120 127 mpd φ x 1 P 1 2 R 0 + 1 P 1
129 1e0p1 1 = 0 + 1
130 129 oveq1i 1 P 1 = 0 + 1 P 1
131 128 130 eleqtrrdi φ x 1 P 1 2 R 1 P 1
132 elfznn R 1 P 1 R
133 131 132 syl φ x 1 P 1 2 R
134 133 nnrpd φ x 1 P 1 2 R +
135 76 134 ltsubrpd φ x 1 P 1 2 P R < P
136 modid P R P + 0 P R P R < P P R mod P = P R
137 77 52 80 135 136 syl22anc φ x 1 P 1 2 P R mod P = P R
138 72 75 137 3eqtr3d φ x 1 P 1 2 R mod P = P R
139 138 adantr φ x 1 P 1 2 R + 1 2 R mod P = P R
140 ax-1cn 1
141 140 a1i φ x 1 P 1 2 R + 1 2 1
142 133 adantr φ x 1 P 1 2 R + 1 2 R
143 33 peano2zd φ x 1 P 1 2 R + 1
144 dvdsval2 2 2 0 R + 1 2 R + 1 R + 1 2
145 10 37 143 144 mp3an12i φ x 1 P 1 2 2 R + 1 R + 1 2
146 145 biimpar φ x 1 P 1 2 R + 1 2 2 R + 1
147 33 adantr φ x 1 P 1 2 R + 1 2 R
148 81 a1i φ x 1 P 1 2 R + 1 2 2
149 1lt2 1 < 2
150 149 a1i φ x 1 P 1 2 R + 1 2 1 < 2
151 ndvdsp1 R 2 1 < 2 2 R ¬ 2 R + 1
152 147 148 150 151 syl3anc φ x 1 P 1 2 R + 1 2 2 R ¬ 2 R + 1
153 146 152 mt2d φ x 1 P 1 2 R + 1 2 ¬ 2 R
154 oexpneg 1 R ¬ 2 R 1 R = 1 R
155 141 142 153 154 syl3anc φ x 1 P 1 2 R + 1 2 1 R = 1 R
156 1exp R 1 R = 1
157 147 156 syl φ x 1 P 1 2 R + 1 2 1 R = 1
158 157 negeqd φ x 1 P 1 2 R + 1 2 1 R = 1
159 155 158 eqtrd φ x 1 P 1 2 R + 1 2 1 R = 1
160 159 oveq1d φ x 1 P 1 2 R + 1 2 1 R R = -1 R
161 34 adantr φ x 1 P 1 2 R + 1 2 R
162 161 mulm1d φ x 1 P 1 2 R + 1 2 -1 R = R
163 160 162 eqtrd φ x 1 P 1 2 R + 1 2 1 R R = R
164 163 oveq1d φ x 1 P 1 2 R + 1 2 1 R R mod P = R mod P
165 64 adantr φ x 1 P 1 2 R + 1 2 P
166 165 161 141 pnpcan2d φ x 1 P 1 2 R + 1 2 P + 1 - R + 1 = P R
167 139 164 166 3eqtr4d φ x 1 P 1 2 R + 1 2 1 R R mod P = P + 1 - R + 1
168 167 oveq1d φ x 1 P 1 2 R + 1 2 1 R R mod P 2 = P + 1 - R + 1 2
169 peano2cn P P + 1
170 165 169 syl φ x 1 P 1 2 R + 1 2 P + 1
171 peano2cn R R + 1
172 161 171 syl φ x 1 P 1 2 R + 1 2 R + 1
173 2cnd φ x 1 P 1 2 R + 1 2 2
174 37 a1i φ x 1 P 1 2 R + 1 2 2 0
175 170 172 173 174 divsubdird φ x 1 P 1 2 R + 1 2 P + 1 - R + 1 2 = P + 1 2 R + 1 2
176 168 175 eqtrd φ x 1 P 1 2 R + 1 2 1 R R mod P 2 = P + 1 2 R + 1 2
177 165 141 173 subadd23d φ x 1 P 1 2 R + 1 2 P - 1 + 2 = P + 2 - 1
178 2m1e1 2 1 = 1
179 178 oveq2i P + 2 - 1 = P + 1
180 177 179 syl6req φ x 1 P 1 2 R + 1 2 P + 1 = P - 1 + 2
181 180 oveq1d φ x 1 P 1 2 R + 1 2 P + 1 2 = P - 1 + 2 2
182 91 nncnd φ x 1 P 1 2 P 1
183 182 adantr φ x 1 P 1 2 R + 1 2 P 1
184 183 173 173 174 divdird φ x 1 P 1 2 R + 1 2 P - 1 + 2 2 = P 1 2 + 2 2
185 2div2e1 2 2 = 1
186 185 oveq2i P 1 2 + 2 2 = P 1 2 + 1
187 184 186 syl6eq φ x 1 P 1 2 R + 1 2 P - 1 + 2 2 = P 1 2 + 1
188 181 187 eqtrd φ x 1 P 1 2 R + 1 2 P + 1 2 = P 1 2 + 1
189 oddprm P 2 P 1 2
190 24 189 syl φ x 1 P 1 2 P 1 2
191 190 nnzd φ x 1 P 1 2 P 1 2
192 191 adantr φ x 1 P 1 2 R + 1 2 P 1 2
193 192 peano2zd φ x 1 P 1 2 R + 1 2 P 1 2 + 1
194 188 193 eqeltrd φ x 1 P 1 2 R + 1 2 P + 1 2
195 simpr φ x 1 P 1 2 R + 1 2 R + 1 2
196 194 195 zsubcld φ x 1 P 1 2 R + 1 2 P + 1 2 R + 1 2
197 176 196 eqeltrd φ x 1 P 1 2 R + 1 2 1 R R mod P 2
198 zeo R R 2 R + 1 2
199 33 198 syl φ x 1 P 1 2 R 2 R + 1 2
200 63 197 199 mpjaodan φ x 1 P 1 2 1 R R mod P 2
201 m1expcl R 1 R
202 33 201 syl φ x 1 P 1 2 1 R
203 202 33 zmulcld φ x 1 P 1 2 1 R R
204 203 27 zmodcld φ x 1 P 1 2 1 R R mod P 0
205 204 nn0red φ x 1 P 1 2 1 R R mod P
206 fzm1ndvds P R 1 P 1 ¬ P R
207 27 131 206 syl2anc φ x 1 P 1 2 ¬ P R
208 ax-1ne0 1 0
209 divneg2 1 1 1 0 1 1 = 1 1
210 140 140 208 209 mp3an 1 1 = 1 1
211 1div1e1 1 1 = 1
212 211 negeqi 1 1 = 1
213 210 212 eqtr3i 1 1 = 1
214 213 oveq1i 1 1 R = 1 R
215 6 a1i φ x 1 P 1 2 1
216 8 a1i φ x 1 P 1 2 1 0
217 215 216 33 exprecd φ x 1 P 1 2 1 1 R = 1 1 R
218 214 217 syl5eqr φ x 1 P 1 2 1 R = 1 1 R
219 218 oveq2d φ x 1 P 1 2 1 R 1 R = 1 R 1 1 R
220 202 zcnd φ x 1 P 1 2 1 R
221 215 216 33 expne0d φ x 1 P 1 2 1 R 0
222 220 221 recidd φ x 1 P 1 2 1 R 1 1 R = 1
223 219 222 eqtrd φ x 1 P 1 2 1 R 1 R = 1
224 223 oveq1d φ x 1 P 1 2 1 R 1 R R = 1 R
225 220 220 34 mulassd φ x 1 P 1 2 1 R 1 R R = 1 R 1 R R
226 34 mulid2d φ x 1 P 1 2 1 R = R
227 224 225 226 3eqtr3d φ x 1 P 1 2 1 R 1 R R = R
228 227 breq2d φ x 1 P 1 2 P 1 R 1 R R P R
229 207 228 mtbird φ x 1 P 1 2 ¬ P 1 R 1 R R
230 dvdsmultr2 P 1 R 1 R R P 1 R R P 1 R 1 R R
231 101 202 203 230 syl3anc φ x 1 P 1 2 P 1 R R P 1 R 1 R R
232 229 231 mtod φ x 1 P 1 2 ¬ P 1 R R
233 dvdsval3 P 1 R R P 1 R R 1 R R mod P = 0
234 27 203 233 syl2anc φ x 1 P 1 2 P 1 R R 1 R R mod P = 0
235 232 234 mtbid φ x 1 P 1 2 ¬ 1 R R mod P = 0
236 elnn0 1 R R mod P 0 1 R R mod P 1 R R mod P = 0
237 204 236 sylib φ x 1 P 1 2 1 R R mod P 1 R R mod P = 0
238 237 ord φ x 1 P 1 2 ¬ 1 R R mod P 1 R R mod P = 0
239 235 238 mt3d φ x 1 P 1 2 1 R R mod P
240 239 nngt0d φ x 1 P 1 2 0 < 1 R R mod P
241 205 94 240 96 divgt0d φ x 1 P 1 2 0 < 1 R R mod P 2
242 elnnz 1 R R mod P 2 1 R R mod P 2 0 < 1 R R mod P 2
243 200 241 242 sylanbrc φ x 1 P 1 2 1 R R mod P 2
244 243 nnge1d φ x 1 P 1 2 1 1 R R mod P 2
245 zmodfz 1 R R P 1 R R mod P 0 P 1
246 203 27 245 syl2anc φ x 1 P 1 2 1 R R mod P 0 P 1
247 elfzle2 1 R R mod P 0 P 1 1 R R mod P P 1
248 246 247 syl φ x 1 P 1 2 1 R R mod P P 1
249 lediv1 1 R R mod P P 1 2 0 < 2 1 R R mod P P 1 1 R R mod P 2 P 1 2
250 205 92 94 96 249 syl112anc φ x 1 P 1 2 1 R R mod P P 1 1 R R mod P 2 P 1 2
251 248 250 mpbid φ x 1 P 1 2 1 R R mod P 2 P 1 2
252 elfz 1 R R mod P 2 1 P 1 2 1 R R mod P 2 1 P 1 2 1 1 R R mod P 2 1 R R mod P 2 P 1 2
253 200 73 191 252 syl3anc φ x 1 P 1 2 1 R R mod P 2 1 P 1 2 1 1 R R mod P 2 1 R R mod P 2 P 1 2
254 244 251 253 mpbir2and φ x 1 P 1 2 1 R R mod P 2 1 P 1 2
255 254 5 fmptd φ M : 1 P 1 2 1 P 1 2