Metamath Proof Explorer


Theorem lgsfcl

Description: Closure of the function F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval.1 F = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
Assertion lgsfcl A N N 0 F :

Proof

Step Hyp Ref Expression
1 lgsval.1 F = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
2 eqid x | x 1 = x | x 1
3 1 2 lgsfcl2 A N N 0 F : x | x 1
4 ssrab2 x | x 1
5 fss F : x | x 1 x | x 1 F :
6 3 4 5 sylancl A N N 0 F :