Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval.1 |
|
2 |
|
lgsfcl2.z |
|
3 |
|
0z |
|
4 |
|
0le1 |
|
5 |
|
fveq2 |
|
6 |
|
abs0 |
|
7 |
5 6
|
eqtrdi |
|
8 |
7
|
breq1d |
|
9 |
8 2
|
elrab2 |
|
10 |
3 4 9
|
mpbir2an |
|
11 |
|
1z |
|
12 |
|
1le1 |
|
13 |
|
fveq2 |
|
14 |
|
abs1 |
|
15 |
13 14
|
eqtrdi |
|
16 |
15
|
breq1d |
|
17 |
16 2
|
elrab2 |
|
18 |
11 12 17
|
mpbir2an |
|
19 |
|
neg1z |
|
20 |
|
fveq2 |
|
21 |
|
ax-1cn |
|
22 |
21
|
absnegi |
|
23 |
22 14
|
eqtri |
|
24 |
20 23
|
eqtrdi |
|
25 |
24
|
breq1d |
|
26 |
25 2
|
elrab2 |
|
27 |
19 12 26
|
mpbir2an |
|
28 |
18 27
|
ifcli |
|
29 |
10 28
|
ifcli |
|
30 |
29
|
a1i |
|
31 |
|
simpl1 |
|
32 |
31
|
ad2antrr |
|
33 |
|
simplr |
|
34 |
|
simpr |
|
35 |
34
|
neqned |
|
36 |
|
eldifsn |
|
37 |
33 35 36
|
sylanbrc |
|
38 |
2
|
lgslem4 |
|
39 |
32 37 38
|
syl2anc |
|
40 |
30 39
|
ifclda |
|
41 |
|
simpr |
|
42 |
|
simpll2 |
|
43 |
|
simpll3 |
|
44 |
|
pczcl |
|
45 |
41 42 43 44
|
syl12anc |
|
46 |
2
|
ssrab3 |
|
47 |
|
zsscn |
|
48 |
46 47
|
sstri |
|
49 |
2
|
lgslem3 |
|
50 |
48 49 18
|
expcllem |
|
51 |
40 45 50
|
syl2anc |
|
52 |
18
|
a1i |
|
53 |
51 52
|
ifclda |
|
54 |
53 1
|
fmptd |
|