Metamath Proof Explorer


Theorem lgsfcl3

Description: Closure of the function F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval4.1 F = n if n A / L n n pCnt N 1
Assertion lgsfcl3 A N N 0 F :

Proof

Step Hyp Ref Expression
1 lgsval4.1 F = n if n A / L n n pCnt N 1
2 eqid n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
3 2 lgsfcl A N N 0 n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 :
4 2 lgsval4lem A N N 0 n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 = n if n A / L n n pCnt N 1
5 4 1 eqtr4di A N N 0 n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 = F
6 5 feq1d A N N 0 n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 : F :
7 3 6 mpbid A N N 0 F :