Metamath Proof Explorer


Theorem lgsfle1

Description: The function F has magnitude less or equal to 1 . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval.1 F = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
Assertion lgsfle1 A N N 0 M F M 1

Proof

Step Hyp Ref Expression
1 lgsval.1 F = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
2 eqid x | x 1 = x | x 1
3 1 2 lgsfcl2 A N N 0 F : x | x 1
4 3 ffvelrnda A N N 0 M F M x | x 1
5 fveq2 x = F M x = F M
6 5 breq1d x = F M x 1 F M 1
7 6 elrab F M x | x 1 F M F M 1
8 7 simprbi F M x | x 1 F M 1
9 4 8 syl A N N 0 M F M 1