Metamath Proof Explorer


Theorem lgsle1

Description: The Legendre symbol has absolute value less than or equal to 1. Together with lgscl this implies that it takes values in { -u 1 , 0 , 1 } . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgsle1 A N A / L N 1

Proof

Step Hyp Ref Expression
1 eqid x | x 1 = x | x 1
2 1 lgscl2 A N A / L N x | x 1
3 fveq2 x = A / L N x = A / L N
4 3 breq1d x = A / L N x 1 A / L N 1
5 4 elrab A / L N x | x 1 A / L N A / L N 1
6 5 simprbi A / L N x | x 1 A / L N 1
7 2 6 syl A N A / L N 1