Metamath Proof Explorer


Theorem lgslem2

Description: The set Z of all integers with absolute value at most 1 contains { -u 1 , 0 , 1 } . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgslem2.z Z = x | x 1
Assertion lgslem2 1 Z 0 Z 1 Z

Proof

Step Hyp Ref Expression
1 lgslem2.z Z = x | x 1
2 neg1z 1
3 1le1 1 1
4 fveq2 x = 1 x = 1
5 ax-1cn 1
6 5 absnegi 1 = 1
7 abs1 1 = 1
8 6 7 eqtri 1 = 1
9 4 8 eqtrdi x = 1 x = 1
10 9 breq1d x = 1 x 1 1 1
11 10 1 elrab2 1 Z 1 1 1
12 2 3 11 mpbir2an 1 Z
13 0z 0
14 0le1 0 1
15 fveq2 x = 0 x = 0
16 abs0 0 = 0
17 15 16 eqtrdi x = 0 x = 0
18 17 breq1d x = 0 x 1 0 1
19 18 1 elrab2 0 Z 0 0 1
20 13 14 19 mpbir2an 0 Z
21 1z 1
22 fveq2 x = 1 x = 1
23 22 7 eqtrdi x = 1 x = 1
24 23 breq1d x = 1 x 1 1 1
25 24 1 elrab2 1 Z 1 1 1
26 21 3 25 mpbir2an 1 Z
27 12 20 26 3pm3.2i 1 Z 0 Z 1 Z