Metamath Proof Explorer


Theorem lgslem3

Description: The set Z of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgslem2.z Z = x | x 1
Assertion lgslem3 A Z B Z A B Z

Proof

Step Hyp Ref Expression
1 lgslem2.z Z = x | x 1
2 zmulcl A B A B
3 2 ad2ant2r A A 1 B B 1 A B
4 zcn A A
5 zcn B B
6 absmul A B A B = A B
7 4 5 6 syl2an A B A B = A B
8 7 ad2ant2r A A 1 B B 1 A B = A B
9 abscl A A
10 absge0 A 0 A
11 9 10 jca A A 0 A
12 4 11 syl A A 0 A
13 12 adantr A B A 0 A
14 1red A B 1
15 abscl B B
16 absge0 B 0 B
17 15 16 jca B B 0 B
18 5 17 syl B B 0 B
19 18 adantl A B B 0 B
20 lemul12a A 0 A 1 B 0 B 1 A 1 B 1 A B 1 1
21 13 14 19 14 20 syl22anc A B A 1 B 1 A B 1 1
22 21 imp A B A 1 B 1 A B 1 1
23 22 an4s A A 1 B B 1 A B 1 1
24 1t1e1 1 1 = 1
25 23 24 breqtrdi A A 1 B B 1 A B 1
26 8 25 eqbrtrd A A 1 B B 1 A B 1
27 3 26 jca A A 1 B B 1 A B A B 1
28 fveq2 x = A x = A
29 28 breq1d x = A x 1 A 1
30 29 1 elrab2 A Z A A 1
31 fveq2 x = B x = B
32 31 breq1d x = B x 1 B 1
33 32 1 elrab2 B Z B B 1
34 30 33 anbi12i A Z B Z A A 1 B B 1
35 fveq2 x = A B x = A B
36 35 breq1d x = A B x 1 A B 1
37 36 1 elrab2 A B Z A B A B 1
38 27 34 37 3imtr4i A Z B Z A B Z