Step |
Hyp |
Ref |
Expression |
1 |
|
zmodcl |
|
2 |
1
|
3adant3 |
|
3 |
2
|
nn0zd |
|
4 |
3
|
ad2antrr |
|
5 |
|
simpr |
|
6 |
5
|
adantr |
|
7 |
|
simpl3 |
|
8 |
|
breq1 |
|
9 |
8
|
notbid |
|
10 |
7 9
|
syl5ibrcom |
|
11 |
10
|
necon2ad |
|
12 |
11
|
imp |
|
13 |
|
eldifsn |
|
14 |
6 12 13
|
sylanbrc |
|
15 |
|
oddprm |
|
16 |
14 15
|
syl |
|
17 |
16
|
nnnn0d |
|
18 |
|
zexpcl |
|
19 |
4 17 18
|
syl2anc |
|
20 |
19
|
zred |
|
21 |
|
simpll1 |
|
22 |
|
zexpcl |
|
23 |
21 17 22
|
syl2anc |
|
24 |
23
|
zred |
|
25 |
|
1red |
|
26 |
|
prmnn |
|
27 |
26
|
ad2antlr |
|
28 |
27
|
nnrpd |
|
29 |
|
prmz |
|
30 |
29
|
ad2antlr |
|
31 |
|
simp2 |
|
32 |
31
|
ad2antrr |
|
33 |
32
|
nnzd |
|
34 |
4 21
|
zsubcld |
|
35 |
|
simpr |
|
36 |
21
|
zred |
|
37 |
32
|
nnrpd |
|
38 |
|
modabs2 |
|
39 |
36 37 38
|
syl2anc |
|
40 |
|
moddvds |
|
41 |
32 4 21 40
|
syl3anc |
|
42 |
39 41
|
mpbid |
|
43 |
30 33 34 35 42
|
dvdstrd |
|
44 |
|
moddvds |
|
45 |
27 4 21 44
|
syl3anc |
|
46 |
43 45
|
mpbird |
|
47 |
|
modexp |
|
48 |
4 21 17 28 46 47
|
syl221anc |
|
49 |
|
modadd1 |
|
50 |
20 24 25 28 48 49
|
syl221anc |
|
51 |
50
|
oveq1d |
|
52 |
|
lgsval3 |
|
53 |
4 14 52
|
syl2anc |
|
54 |
|
lgsval3 |
|
55 |
21 14 54
|
syl2anc |
|
56 |
51 53 55
|
3eqtr4d |
|
57 |
56
|
oveq1d |
|
58 |
3
|
ad2antrr |
|
59 |
29
|
ad2antlr |
|
60 |
|
lgscl |
|
61 |
58 59 60
|
syl2anc |
|
62 |
61
|
zcnd |
|
63 |
62
|
exp0d |
|
64 |
|
simpll1 |
|
65 |
|
lgscl |
|
66 |
64 59 65
|
syl2anc |
|
67 |
66
|
zcnd |
|
68 |
67
|
exp0d |
|
69 |
63 68
|
eqtr4d |
|
70 |
31
|
adantr |
|
71 |
|
pceq0 |
|
72 |
5 70 71
|
syl2anc |
|
73 |
72
|
biimpar |
|
74 |
73
|
oveq2d |
|
75 |
73
|
oveq2d |
|
76 |
69 74 75
|
3eqtr4d |
|
77 |
57 76
|
pm2.61dan |
|
78 |
77
|
ifeq1da |
|
79 |
78
|
mpteq2dv |
|
80 |
79
|
seqeq3d |
|
81 |
80
|
fveq1d |
|
82 |
|
eqid |
|
83 |
82
|
lgsval4a |
|
84 |
3 31 83
|
syl2anc |
|
85 |
|
eqid |
|
86 |
85
|
lgsval4a |
|
87 |
86
|
3adant3 |
|
88 |
81 84 87
|
3eqtr4d |
|