Metamath Proof Explorer


Theorem lgsmodeq

Description: The Legendre (Jacobi) symbol is preserved under reduction mod n when n is odd. Theorem 9.9(c) in ApostolNT p. 188. (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion lgsmodeq A B N ¬ 2 N A mod N = B mod N A / L N = B / L N

Proof

Step Hyp Ref Expression
1 3anass A N ¬ 2 N A N ¬ 2 N
2 1 biimpri A N ¬ 2 N A N ¬ 2 N
3 2 3adant2 A B N ¬ 2 N A N ¬ 2 N
4 lgsmod A N ¬ 2 N A mod N / L N = A / L N
5 3 4 syl A B N ¬ 2 N A mod N / L N = A / L N
6 oveq1 A mod N = B mod N A mod N / L N = B mod N / L N
7 5 6 sylan9req A B N ¬ 2 N A mod N = B mod N A / L N = B mod N / L N
8 3anass B N ¬ 2 N B N ¬ 2 N
9 8 biimpri B N ¬ 2 N B N ¬ 2 N
10 9 3adant1 A B N ¬ 2 N B N ¬ 2 N
11 lgsmod B N ¬ 2 N B mod N / L N = B / L N
12 10 11 syl A B N ¬ 2 N B mod N / L N = B / L N
13 12 adantr A B N ¬ 2 N A mod N = B mod N B mod N / L N = B / L N
14 7 13 eqtrd A B N ¬ 2 N A mod N = B mod N A / L N = B / L N
15 14 ex A B N ¬ 2 N A mod N = B mod N A / L N = B / L N