Step |
Hyp |
Ref |
Expression |
1 |
|
lgsqr.y |
|
2 |
|
lgsqr.s |
|
3 |
|
lgsqr.b |
|
4 |
|
lgsqr.d |
|
5 |
|
lgsqr.o |
|
6 |
|
lgsqr.e |
|
7 |
|
lgsqr.x |
|
8 |
|
lgsqr.m |
|
9 |
|
lgsqr.u |
|
10 |
|
lgsqr.t |
|
11 |
|
lgsqr.l |
|
12 |
|
lgsqr.1 |
|
13 |
|
lgsqrlem1.3 |
|
14 |
|
lgsqrlem1.4 |
|
15 |
10
|
fveq2i |
|
16 |
15
|
fveq1i |
|
17 |
|
eqid |
|
18 |
12
|
eldifad |
|
19 |
1
|
znfld |
|
20 |
18 19
|
syl |
|
21 |
|
fldidom |
|
22 |
20 21
|
syl |
|
23 |
|
isidom |
|
24 |
23
|
simplbi |
|
25 |
22 24
|
syl |
|
26 |
|
crngring |
|
27 |
25 26
|
syl |
|
28 |
11
|
zrhrhm |
|
29 |
27 28
|
syl |
|
30 |
|
zringbas |
|
31 |
30 17
|
rhmf |
|
32 |
29 31
|
syl |
|
33 |
32 13
|
ffvelrnd |
|
34 |
5 7 17 2 3 25 33
|
evl1vard |
|
35 |
|
eqid |
|
36 |
|
oddprm |
|
37 |
12 36
|
syl |
|
38 |
37
|
nnnn0d |
|
39 |
5 2 17 3 25 33 34 6 35 38
|
evl1expd |
|
40 |
|
zringmpg |
|
41 |
|
eqid |
|
42 |
40 41
|
rhmmhm |
|
43 |
29 42
|
syl |
|
44 |
40 30
|
mgpbas |
|
45 |
|
eqid |
|
46 |
44 45 35
|
mhmmulg |
|
47 |
43 38 13 46
|
syl3anc |
|
48 |
|
zsubrg |
|
49 |
|
eqid |
|
50 |
49
|
subrgsubm |
|
51 |
48 50
|
mp1i |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
52 53 45
|
submmulg |
|
55 |
51 38 13 54
|
syl3anc |
|
56 |
13
|
zcnd |
|
57 |
|
cnfldexp |
|
58 |
56 38 57
|
syl2anc |
|
59 |
55 58
|
eqtr3d |
|
60 |
59
|
fveq2d |
|
61 |
|
prmnn |
|
62 |
18 61
|
syl |
|
63 |
|
zexpcl |
|
64 |
13 38 63
|
syl2anc |
|
65 |
|
1zzd |
|
66 |
|
moddvds |
|
67 |
62 64 65 66
|
syl3anc |
|
68 |
14 67
|
mpbid |
|
69 |
62
|
nnnn0d |
|
70 |
1 11
|
zndvds |
|
71 |
69 64 65 70
|
syl3anc |
|
72 |
68 71
|
mpbird |
|
73 |
|
zring1 |
|
74 |
|
eqid |
|
75 |
73 74
|
rhm1 |
|
76 |
29 75
|
syl |
|
77 |
60 72 76
|
3eqtrd |
|
78 |
47 77
|
eqtr3d |
|
79 |
78
|
eqeq2d |
|
80 |
79
|
anbi2d |
|
81 |
39 80
|
mpbid |
|
82 |
|
eqid |
|
83 |
17 74
|
ringidcl |
|
84 |
27 83
|
syl |
|
85 |
5 2 17 82 3 25 84 33
|
evl1scad |
|
86 |
2 82 74 9
|
ply1scl1 |
|
87 |
27 86
|
syl |
|
88 |
87
|
eleq1d |
|
89 |
87
|
fveq2d |
|
90 |
89
|
fveq1d |
|
91 |
90
|
eqeq1d |
|
92 |
88 91
|
anbi12d |
|
93 |
85 92
|
mpbid |
|
94 |
|
eqid |
|
95 |
5 2 17 3 25 33 81 93 8 94
|
evl1subd |
|
96 |
95
|
simprd |
|
97 |
16 96
|
syl5eq |
|
98 |
|
ringgrp |
|
99 |
27 98
|
syl |
|
100 |
|
eqid |
|
101 |
17 100 94
|
grpsubid |
|
102 |
99 84 101
|
syl2anc |
|
103 |
97 102
|
eqtrd |
|