Step |
Hyp |
Ref |
Expression |
1 |
|
lgsqr.y |
|
2 |
|
lgsqr.s |
|
3 |
|
lgsqr.b |
|
4 |
|
lgsqr.d |
|
5 |
|
lgsqr.o |
|
6 |
|
lgsqr.e |
|
7 |
|
lgsqr.x |
|
8 |
|
lgsqr.m |
|
9 |
|
lgsqr.u |
|
10 |
|
lgsqr.t |
|
11 |
|
lgsqr.l |
|
12 |
|
lgsqr.1 |
|
13 |
|
lgsqr.g |
|
14 |
12
|
eldifad |
|
15 |
1
|
znfld |
|
16 |
14 15
|
syl |
|
17 |
|
fldidom |
|
18 |
16 17
|
syl |
|
19 |
|
isidom |
|
20 |
19
|
simplbi |
|
21 |
18 20
|
syl |
|
22 |
|
crngring |
|
23 |
21 22
|
syl |
|
24 |
11
|
zrhrhm |
|
25 |
23 24
|
syl |
|
26 |
|
zringbas |
|
27 |
|
eqid |
|
28 |
26 27
|
rhmf |
|
29 |
25 28
|
syl |
|
30 |
29
|
adantr |
|
31 |
|
elfzelz |
|
32 |
31
|
adantl |
|
33 |
|
zsqcl |
|
34 |
32 33
|
syl |
|
35 |
30 34
|
ffvelrnd |
|
36 |
12
|
adantr |
|
37 |
|
elfznn |
|
38 |
37
|
adantl |
|
39 |
38
|
nncnd |
|
40 |
|
oddprm |
|
41 |
12 40
|
syl |
|
42 |
41
|
nnnn0d |
|
43 |
42
|
adantr |
|
44 |
|
2nn0 |
|
45 |
44
|
a1i |
|
46 |
39 43 45
|
expmuld |
|
47 |
|
prmnn |
|
48 |
14 47
|
syl |
|
49 |
48
|
nnred |
|
50 |
|
peano2rem |
|
51 |
49 50
|
syl |
|
52 |
51
|
recnd |
|
53 |
|
2cnd |
|
54 |
|
2ne0 |
|
55 |
54
|
a1i |
|
56 |
52 53 55
|
divcan2d |
|
57 |
|
phiprm |
|
58 |
14 57
|
syl |
|
59 |
56 58
|
eqtr4d |
|
60 |
59
|
adantr |
|
61 |
60
|
oveq2d |
|
62 |
46 61
|
eqtr3d |
|
63 |
62
|
oveq1d |
|
64 |
14
|
adantr |
|
65 |
64 47
|
syl |
|
66 |
48
|
nnzd |
|
67 |
66
|
adantr |
|
68 |
32 67
|
gcdcomd |
|
69 |
38
|
nnred |
|
70 |
51
|
rehalfcld |
|
71 |
70
|
adantr |
|
72 |
49
|
adantr |
|
73 |
|
elfzle2 |
|
74 |
73
|
adantl |
|
75 |
|
prmuz2 |
|
76 |
14 75
|
syl |
|
77 |
|
uz2m1nn |
|
78 |
76 77
|
syl |
|
79 |
78
|
nnrpd |
|
80 |
|
rphalflt |
|
81 |
79 80
|
syl |
|
82 |
49
|
ltm1d |
|
83 |
70 51 49 81 82
|
lttrd |
|
84 |
83
|
adantr |
|
85 |
69 71 72 74 84
|
lelttrd |
|
86 |
69 72
|
ltnled |
|
87 |
85 86
|
mpbid |
|
88 |
|
dvdsle |
|
89 |
67 38 88
|
syl2anc |
|
90 |
87 89
|
mtod |
|
91 |
|
coprm |
|
92 |
64 32 91
|
syl2anc |
|
93 |
90 92
|
mpbid |
|
94 |
68 93
|
eqtrd |
|
95 |
|
eulerth |
|
96 |
65 32 94 95
|
syl3anc |
|
97 |
63 96
|
eqtrd |
|
98 |
1 2 3 4 5 6 7 8 9 10 11 36 34 97
|
lgsqrlem1 |
|
99 |
|
eqid |
|
100 |
|
eqid |
|
101 |
|
fvexd |
|
102 |
5 2 99 27
|
evl1rhm |
|
103 |
21 102
|
syl |
|
104 |
3 100
|
rhmf |
|
105 |
103 104
|
syl |
|
106 |
2
|
ply1ring |
|
107 |
23 106
|
syl |
|
108 |
|
ringgrp |
|
109 |
107 108
|
syl |
|
110 |
|
eqid |
|
111 |
110
|
ringmgp |
|
112 |
107 111
|
syl |
|
113 |
7 2 3
|
vr1cl |
|
114 |
23 113
|
syl |
|
115 |
110 3
|
mgpbas |
|
116 |
115 6
|
mulgnn0cl |
|
117 |
112 42 114 116
|
syl3anc |
|
118 |
3 9
|
ringidcl |
|
119 |
107 118
|
syl |
|
120 |
3 8
|
grpsubcl |
|
121 |
109 117 119 120
|
syl3anc |
|
122 |
10 121
|
eqeltrid |
|
123 |
105 122
|
ffvelrnd |
|
124 |
99 27 100 16 101 123
|
pwselbas |
|
125 |
124
|
ffnd |
|
126 |
125
|
adantr |
|
127 |
|
fniniseg |
|
128 |
126 127
|
syl |
|
129 |
35 98 128
|
mpbir2and |
|
130 |
129 13
|
fmptd |
|
131 |
|
fvoveq1 |
|
132 |
|
fvex |
|
133 |
131 13 132
|
fvmpt |
|
134 |
133
|
ad2antrl |
|
135 |
|
fvoveq1 |
|
136 |
|
fvex |
|
137 |
135 13 136
|
fvmpt |
|
138 |
137
|
ad2antll |
|
139 |
134 138
|
eqeq12d |
|
140 |
48
|
nnnn0d |
|
141 |
140
|
adantr |
|
142 |
|
elfzelz |
|
143 |
142
|
ad2antrl |
|
144 |
|
zsqcl |
|
145 |
143 144
|
syl |
|
146 |
|
elfzelz |
|
147 |
146
|
ad2antll |
|
148 |
|
zsqcl |
|
149 |
147 148
|
syl |
|
150 |
1 11
|
zndvds |
|
151 |
141 145 149 150
|
syl3anc |
|
152 |
|
elfznn |
|
153 |
152
|
ad2antrl |
|
154 |
153
|
nncnd |
|
155 |
|
elfznn |
|
156 |
155
|
ad2antll |
|
157 |
156
|
nncnd |
|
158 |
|
subsq |
|
159 |
154 157 158
|
syl2anc |
|
160 |
159
|
breq2d |
|
161 |
139 151 160
|
3bitrd |
|
162 |
14
|
adantr |
|
163 |
143 147
|
zaddcld |
|
164 |
143 147
|
zsubcld |
|
165 |
|
euclemma |
|
166 |
162 163 164 165
|
syl3anc |
|
167 |
162 47
|
syl |
|
168 |
167
|
nnzd |
|
169 |
153 156
|
nnaddcld |
|
170 |
|
dvdsle |
|
171 |
168 169 170
|
syl2anc |
|
172 |
169
|
nnred |
|
173 |
167
|
nnred |
|
174 |
173 50
|
syl |
|
175 |
153
|
nnred |
|
176 |
156
|
nnred |
|
177 |
70
|
adantr |
|
178 |
|
elfzle2 |
|
179 |
178
|
ad2antrl |
|
180 |
|
elfzle2 |
|
181 |
180
|
ad2antll |
|
182 |
175 176 177 177 179 181
|
le2addd |
|
183 |
52
|
adantr |
|
184 |
183
|
2halvesd |
|
185 |
182 184
|
breqtrd |
|
186 |
173
|
ltm1d |
|
187 |
172 174 173 185 186
|
lelttrd |
|
188 |
172 173
|
ltnled |
|
189 |
187 188
|
mpbid |
|
190 |
189
|
pm2.21d |
|
191 |
171 190
|
syld |
|
192 |
|
moddvds |
|
193 |
167 143 147 192
|
syl3anc |
|
194 |
167
|
nnrpd |
|
195 |
153
|
nnnn0d |
|
196 |
195
|
nn0ge0d |
|
197 |
83
|
adantr |
|
198 |
175 177 173 179 197
|
lelttrd |
|
199 |
|
modid |
|
200 |
175 194 196 198 199
|
syl22anc |
|
201 |
156
|
nnnn0d |
|
202 |
201
|
nn0ge0d |
|
203 |
176 177 173 181 197
|
lelttrd |
|
204 |
|
modid |
|
205 |
176 194 202 203 204
|
syl22anc |
|
206 |
200 205
|
eqeq12d |
|
207 |
193 206
|
bitr3d |
|
208 |
207
|
biimpd |
|
209 |
191 208
|
jaod |
|
210 |
166 209
|
sylbid |
|
211 |
161 210
|
sylbid |
|
212 |
211
|
ralrimivva |
|
213 |
|
dff13 |
|
214 |
130 212 213
|
sylanbrc |
|