Step |
Hyp |
Ref |
Expression |
1 |
|
lgsqr.y |
|
2 |
|
lgsqr.s |
|
3 |
|
lgsqr.b |
|
4 |
|
lgsqr.d |
|
5 |
|
lgsqr.o |
|
6 |
|
lgsqr.e |
|
7 |
|
lgsqr.x |
|
8 |
|
lgsqr.m |
|
9 |
|
lgsqr.u |
|
10 |
|
lgsqr.t |
|
11 |
|
lgsqr.l |
|
12 |
|
lgsqr.1 |
|
13 |
|
lgsqr.g |
|
14 |
|
lgsqr.3 |
|
15 |
|
lgsqr.4 |
|
16 |
12
|
eldifad |
|
17 |
1
|
znfld |
|
18 |
16 17
|
syl |
|
19 |
|
fldidom |
|
20 |
18 19
|
syl |
|
21 |
|
isidom |
|
22 |
21
|
simplbi |
|
23 |
20 22
|
syl |
|
24 |
|
crngring |
|
25 |
23 24
|
syl |
|
26 |
11
|
zrhrhm |
|
27 |
25 26
|
syl |
|
28 |
|
zringbas |
|
29 |
|
eqid |
|
30 |
28 29
|
rhmf |
|
31 |
27 30
|
syl |
|
32 |
31 14
|
ffvelrnd |
|
33 |
|
lgsvalmod |
|
34 |
14 12 33
|
syl2anc |
|
35 |
15
|
oveq1d |
|
36 |
34 35
|
eqtr3d |
|
37 |
1 2 3 4 5 6 7 8 9 10 11 12 14 36
|
lgsqrlem1 |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
|
fvexd |
|
41 |
5 2 38 29
|
evl1rhm |
|
42 |
23 41
|
syl |
|
43 |
3 39
|
rhmf |
|
44 |
42 43
|
syl |
|
45 |
2
|
ply1ring |
|
46 |
25 45
|
syl |
|
47 |
|
ringgrp |
|
48 |
46 47
|
syl |
|
49 |
|
eqid |
|
50 |
49
|
ringmgp |
|
51 |
46 50
|
syl |
|
52 |
|
oddprm |
|
53 |
12 52
|
syl |
|
54 |
53
|
nnnn0d |
|
55 |
7 2 3
|
vr1cl |
|
56 |
25 55
|
syl |
|
57 |
49 3
|
mgpbas |
|
58 |
57 6
|
mulgnn0cl |
|
59 |
51 54 56 58
|
syl3anc |
|
60 |
3 9
|
ringidcl |
|
61 |
46 60
|
syl |
|
62 |
3 8
|
grpsubcl |
|
63 |
48 59 61 62
|
syl3anc |
|
64 |
10 63
|
eqeltrid |
|
65 |
44 64
|
ffvelrnd |
|
66 |
38 29 39 18 40 65
|
pwselbas |
|
67 |
66
|
ffnd |
|
68 |
|
fniniseg |
|
69 |
67 68
|
syl |
|
70 |
32 37 69
|
mpbir2and |
|