Metamath Proof Explorer


Theorem lgsqrlem3

Description: Lemma for lgsqr . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses lgsqr.y Y=/P
lgsqr.s S=Poly1Y
lgsqr.b B=BaseS
lgsqr.d D=deg1Y
lgsqr.o O=eval1Y
lgsqr.e ×˙=mulGrpS
lgsqr.x X=var1Y
lgsqr.m -˙=-S
lgsqr.u 1˙=1S
lgsqr.t T=P12×˙X-˙1˙
lgsqr.l L=ℤRHomY
lgsqr.1 φP2
lgsqr.g G=y1P12Ly2
lgsqr.3 φA
lgsqr.4 φA/LP=1
Assertion lgsqrlem3 φLAOT-10Y

Proof

Step Hyp Ref Expression
1 lgsqr.y Y=/P
2 lgsqr.s S=Poly1Y
3 lgsqr.b B=BaseS
4 lgsqr.d D=deg1Y
5 lgsqr.o O=eval1Y
6 lgsqr.e ×˙=mulGrpS
7 lgsqr.x X=var1Y
8 lgsqr.m -˙=-S
9 lgsqr.u 1˙=1S
10 lgsqr.t T=P12×˙X-˙1˙
11 lgsqr.l L=ℤRHomY
12 lgsqr.1 φP2
13 lgsqr.g G=y1P12Ly2
14 lgsqr.3 φA
15 lgsqr.4 φA/LP=1
16 12 eldifad φP
17 1 znfld PYField
18 16 17 syl φYField
19 fldidom YFieldYIDomn
20 18 19 syl φYIDomn
21 isidom YIDomnYCRingYDomn
22 21 simplbi YIDomnYCRing
23 20 22 syl φYCRing
24 crngring YCRingYRing
25 23 24 syl φYRing
26 11 zrhrhm YRingLringRingHomY
27 25 26 syl φLringRingHomY
28 zringbas =Basering
29 eqid BaseY=BaseY
30 28 29 rhmf LringRingHomYL:BaseY
31 27 30 syl φL:BaseY
32 31 14 ffvelrnd φLABaseY
33 lgsvalmod AP2A/LPmodP=AP12modP
34 14 12 33 syl2anc φA/LPmodP=AP12modP
35 15 oveq1d φA/LPmodP=1modP
36 34 35 eqtr3d φAP12modP=1modP
37 1 2 3 4 5 6 7 8 9 10 11 12 14 36 lgsqrlem1 φOTLA=0Y
38 eqid Y𝑠BaseY=Y𝑠BaseY
39 eqid BaseY𝑠BaseY=BaseY𝑠BaseY
40 fvexd φBaseYV
41 5 2 38 29 evl1rhm YCRingOSRingHomY𝑠BaseY
42 23 41 syl φOSRingHomY𝑠BaseY
43 3 39 rhmf OSRingHomY𝑠BaseYO:BBaseY𝑠BaseY
44 42 43 syl φO:BBaseY𝑠BaseY
45 2 ply1ring YRingSRing
46 25 45 syl φSRing
47 ringgrp SRingSGrp
48 46 47 syl φSGrp
49 eqid mulGrpS=mulGrpS
50 49 ringmgp SRingmulGrpSMnd
51 46 50 syl φmulGrpSMnd
52 oddprm P2P12
53 12 52 syl φP12
54 53 nnnn0d φP120
55 7 2 3 vr1cl YRingXB
56 25 55 syl φXB
57 49 3 mgpbas B=BasemulGrpS
58 57 6 mulgnn0cl mulGrpSMndP120XBP12×˙XB
59 51 54 56 58 syl3anc φP12×˙XB
60 3 9 ringidcl SRing1˙B
61 46 60 syl φ1˙B
62 3 8 grpsubcl SGrpP12×˙XB1˙BP12×˙X-˙1˙B
63 48 59 61 62 syl3anc φP12×˙X-˙1˙B
64 10 63 eqeltrid φTB
65 44 64 ffvelrnd φOTBaseY𝑠BaseY
66 38 29 39 18 40 65 pwselbas φOT:BaseYBaseY
67 66 ffnd φOTFnBaseY
68 fniniseg OTFnBaseYLAOT-10YLABaseYOTLA=0Y
69 67 68 syl φLAOT-10YLABaseYOTLA=0Y
70 32 37 69 mpbir2and φLAOT-10Y