Metamath Proof Explorer


Theorem lgsqrlem5

Description: Lemma for lgsqr . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Assertion lgsqrlem5 A P 2 A / L P = 1 x P x 2 A

Proof

Step Hyp Ref Expression
1 eqid /P = /P
2 eqid Poly 1 /P = Poly 1 /P
3 eqid Base Poly 1 /P = Base Poly 1 /P
4 eqid deg 1 /P = deg 1 /P
5 eqid eval 1 /P = eval 1 /P
6 eqid mulGrp Poly 1 /P = mulGrp Poly 1 /P
7 eqid var 1 /P = var 1 /P
8 eqid - Poly 1 /P = - Poly 1 /P
9 eqid 1 Poly 1 /P = 1 Poly 1 /P
10 eqid P 1 2 mulGrp Poly 1 /P var 1 /P - Poly 1 /P 1 Poly 1 /P = P 1 2 mulGrp Poly 1 /P var 1 /P - Poly 1 /P 1 Poly 1 /P
11 eqid ℤRHom /P = ℤRHom /P
12 simp2 A P 2 A / L P = 1 P 2
13 eqid y 1 P 1 2 ℤRHom /P y 2 = y 1 P 1 2 ℤRHom /P y 2
14 simp1 A P 2 A / L P = 1 A
15 simp3 A P 2 A / L P = 1 A / L P = 1
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lgsqrlem4 A P 2 A / L P = 1 x P x 2 A