Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic residues and the Legendre symbol
lgsqrlem5
Next ⟩
lgsqr
Metamath Proof Explorer
Ascii
Unicode
Theorem
lgsqrlem5
Description:
Lemma for
lgsqr
.
(Contributed by
Mario Carneiro
, 15-Jun-2015)
Ref
Expression
Assertion
lgsqrlem5
⊢
A
∈
ℤ
∧
P
∈
ℙ
∖
2
∧
A
/
L
P
=
1
→
∃
x
∈
ℤ
P
∥
x
2
−
A
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
ℤ
/
P
ℤ
=
ℤ
/
P
ℤ
2
eqid
⊢
Poly
1
⁡
ℤ
/
P
ℤ
=
Poly
1
⁡
ℤ
/
P
ℤ
3
eqid
⊢
Base
Poly
1
⁡
ℤ
/
P
ℤ
=
Base
Poly
1
⁡
ℤ
/
P
ℤ
4
eqid
⊢
deg
1
⁡
ℤ
/
P
ℤ
=
deg
1
⁡
ℤ
/
P
ℤ
5
eqid
⊢
eval
1
⁡
ℤ
/
P
ℤ
=
eval
1
⁡
ℤ
/
P
ℤ
6
eqid
⊢
⋅
mulGrp
Poly
1
⁡
ℤ
/
P
ℤ
=
⋅
mulGrp
Poly
1
⁡
ℤ
/
P
ℤ
7
eqid
⊢
var
1
⁡
ℤ
/
P
ℤ
=
var
1
⁡
ℤ
/
P
ℤ
8
eqid
⊢
-
Poly
1
⁡
ℤ
/
P
ℤ
=
-
Poly
1
⁡
ℤ
/
P
ℤ
9
eqid
⊢
1
Poly
1
⁡
ℤ
/
P
ℤ
=
1
Poly
1
⁡
ℤ
/
P
ℤ
10
eqid
⊢
P
−
1
2
⋅
mulGrp
Poly
1
⁡
ℤ
/
P
ℤ
var
1
⁡
ℤ
/
P
ℤ
-
Poly
1
⁡
ℤ
/
P
ℤ
1
Poly
1
⁡
ℤ
/
P
ℤ
=
P
−
1
2
⋅
mulGrp
Poly
1
⁡
ℤ
/
P
ℤ
var
1
⁡
ℤ
/
P
ℤ
-
Poly
1
⁡
ℤ
/
P
ℤ
1
Poly
1
⁡
ℤ
/
P
ℤ
11
eqid
⊢
ℤRHom
⁡
ℤ
/
P
ℤ
=
ℤRHom
⁡
ℤ
/
P
ℤ
12
simp2
⊢
A
∈
ℤ
∧
P
∈
ℙ
∖
2
∧
A
/
L
P
=
1
→
P
∈
ℙ
∖
2
13
eqid
⊢
y
∈
1
…
P
−
1
2
⟼
ℤRHom
⁡
ℤ
/
P
ℤ
⁡
y
2
=
y
∈
1
…
P
−
1
2
⟼
ℤRHom
⁡
ℤ
/
P
ℤ
⁡
y
2
14
simp1
⊢
A
∈
ℤ
∧
P
∈
ℙ
∖
2
∧
A
/
L
P
=
1
→
A
∈
ℤ
15
simp3
⊢
A
∈
ℤ
∧
P
∈
ℙ
∖
2
∧
A
/
L
P
=
1
→
A
/
L
P
=
1
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
lgsqrlem4
⊢
A
∈
ℤ
∧
P
∈
ℙ
∖
2
∧
A
/
L
P
=
1
→
∃
x
∈
ℤ
P
∥
x
2
−
A