Metamath Proof Explorer


Theorem lgsquad

Description: The Law of Quadratic Reciprocity, see also theorem 9.8 in ApostolNT p. 185. If P and Q are distinct odd primes, then the product of the Legendre symbols ( P /L Q ) and ( Q /L P ) is the parity of ( ( P - 1 ) / 2 ) x. ( ( Q - 1 ) / 2 ) . This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity . This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Assertion lgsquad P 2 Q 2 P Q P / L Q Q / L P = 1 P 1 2 Q 1 2

Proof

Step Hyp Ref Expression
1 simp1 P 2 Q 2 P Q P 2
2 simp2 P 2 Q 2 P Q Q 2
3 simp3 P 2 Q 2 P Q P Q
4 eqid P 1 2 = P 1 2
5 eqid Q 1 2 = Q 1 2
6 eleq1w x = z x 1 P 1 2 z 1 P 1 2
7 eleq1w y = w y 1 Q 1 2 w 1 Q 1 2
8 6 7 bi2anan9 x = z y = w x 1 P 1 2 y 1 Q 1 2 z 1 P 1 2 w 1 Q 1 2
9 oveq1 y = w y P = w P
10 oveq1 x = z x Q = z Q
11 9 10 breqan12rd x = z y = w y P < x Q w P < z Q
12 8 11 anbi12d x = z y = w x 1 P 1 2 y 1 Q 1 2 y P < x Q z 1 P 1 2 w 1 Q 1 2 w P < z Q
13 12 cbvopabv x y | x 1 P 1 2 y 1 Q 1 2 y P < x Q = z w | z 1 P 1 2 w 1 Q 1 2 w P < z Q
14 1 2 3 4 5 13 lgsquadlem3 P 2 Q 2 P Q P / L Q Q / L P = 1 P 1 2 Q 1 2