Metamath Proof Explorer


Theorem lgsquad2

Description: Extend lgsquad to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Hypotheses lgsquad2.1 φ M
lgsquad2.2 φ ¬ 2 M
lgsquad2.3 φ N
lgsquad2.4 φ ¬ 2 N
lgsquad2.5 φ M gcd N = 1
Assertion lgsquad2 φ M / L N N / L M = 1 M 1 2 N 1 2

Proof

Step Hyp Ref Expression
1 lgsquad2.1 φ M
2 lgsquad2.2 φ ¬ 2 M
3 lgsquad2.3 φ N
4 lgsquad2.4 φ ¬ 2 N
5 lgsquad2.5 φ M gcd N = 1
6 3 adantr φ m 2 m gcd N = 1 N
7 4 adantr φ m 2 m gcd N = 1 ¬ 2 N
8 simprl φ m 2 m gcd N = 1 m 2
9 eldifi m 2 m
10 8 9 syl φ m 2 m gcd N = 1 m
11 prmnn m m
12 10 11 syl φ m 2 m gcd N = 1 m
13 eldifsni m 2 m 2
14 8 13 syl φ m 2 m gcd N = 1 m 2
15 14 necomd φ m 2 m gcd N = 1 2 m
16 15 neneqd φ m 2 m gcd N = 1 ¬ 2 = m
17 2z 2
18 uzid 2 2 2
19 17 18 ax-mp 2 2
20 dvdsprm 2 2 m 2 m 2 = m
21 19 10 20 sylancr φ m 2 m gcd N = 1 2 m 2 = m
22 16 21 mtbird φ m 2 m gcd N = 1 ¬ 2 m
23 6 nnzd φ m 2 m gcd N = 1 N
24 12 nnzd φ m 2 m gcd N = 1 m
25 23 24 gcdcomd φ m 2 m gcd N = 1 N gcd m = m gcd N
26 simprr φ m 2 m gcd N = 1 m gcd N = 1
27 25 26 eqtrd φ m 2 m gcd N = 1 N gcd m = 1
28 simprl φ m 2 m gcd N = 1 n 2 n gcd m = 1 n 2
29 8 adantr φ m 2 m gcd N = 1 n 2 n gcd m = 1 m 2
30 eldifi n 2 n
31 prmrp n m n gcd m = 1 n m
32 30 10 31 syl2anr φ m 2 m gcd N = 1 n 2 n gcd m = 1 n m
33 32 biimpd φ m 2 m gcd N = 1 n 2 n gcd m = 1 n m
34 33 impr φ m 2 m gcd N = 1 n 2 n gcd m = 1 n m
35 lgsquad n 2 m 2 n m n / L m m / L n = 1 n 1 2 m 1 2
36 28 29 34 35 syl3anc φ m 2 m gcd N = 1 n 2 n gcd m = 1 n / L m m / L n = 1 n 1 2 m 1 2
37 biid x 1 y x gcd 2 m = 1 x / L m m / L x = 1 x 1 2 m 1 2 x 1 y x gcd 2 m = 1 x / L m m / L x = 1 x 1 2 m 1 2
38 6 7 12 22 27 36 37 lgsquad2lem2 φ m 2 m gcd N = 1 N / L m m / L N = 1 N 1 2 m 1 2
39 lgscl m N m / L N
40 24 23 39 syl2anc φ m 2 m gcd N = 1 m / L N
41 lgscl N m N / L m
42 23 24 41 syl2anc φ m 2 m gcd N = 1 N / L m
43 zcn m / L N m / L N
44 zcn N / L m N / L m
45 mulcom m / L N N / L m m / L N N / L m = N / L m m / L N
46 43 44 45 syl2an m / L N N / L m m / L N N / L m = N / L m m / L N
47 40 42 46 syl2anc φ m 2 m gcd N = 1 m / L N N / L m = N / L m m / L N
48 12 nncnd φ m 2 m gcd N = 1 m
49 ax-1cn 1
50 subcl m 1 m 1
51 48 49 50 sylancl φ m 2 m gcd N = 1 m 1
52 51 halfcld φ m 2 m gcd N = 1 m 1 2
53 6 nncnd φ m 2 m gcd N = 1 N
54 subcl N 1 N 1
55 53 49 54 sylancl φ m 2 m gcd N = 1 N 1
56 55 halfcld φ m 2 m gcd N = 1 N 1 2
57 52 56 mulcomd φ m 2 m gcd N = 1 m 1 2 N 1 2 = N 1 2 m 1 2
58 57 oveq2d φ m 2 m gcd N = 1 1 m 1 2 N 1 2 = 1 N 1 2 m 1 2
59 38 47 58 3eqtr4d φ m 2 m gcd N = 1 m / L N N / L m = 1 m 1 2 N 1 2
60 biid x 1 y x gcd 2 N = 1 x / L N N / L x = 1 x 1 2 N 1 2 x 1 y x gcd 2 N = 1 x / L N N / L x = 1 x 1 2 N 1 2
61 1 2 3 4 5 59 60 lgsquad2lem2 φ M / L N N / L M = 1 M 1 2 N 1 2