| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsval.1 |
|
| 2 |
|
simpr |
|
| 3 |
2
|
eqeq1d |
|
| 4 |
|
simpl |
|
| 5 |
4
|
oveq1d |
|
| 6 |
5
|
eqeq1d |
|
| 7 |
6
|
ifbid |
|
| 8 |
2
|
breq1d |
|
| 9 |
4
|
breq1d |
|
| 10 |
8 9
|
anbi12d |
|
| 11 |
10
|
ifbid |
|
| 12 |
4
|
breq2d |
|
| 13 |
4
|
oveq1d |
|
| 14 |
13
|
eleq1d |
|
| 15 |
14
|
ifbid |
|
| 16 |
12 15
|
ifbieq2d |
|
| 17 |
4
|
oveq1d |
|
| 18 |
17
|
oveq1d |
|
| 19 |
18
|
oveq1d |
|
| 20 |
19
|
oveq1d |
|
| 21 |
16 20
|
ifeq12d |
|
| 22 |
2
|
oveq2d |
|
| 23 |
21 22
|
oveq12d |
|
| 24 |
23
|
ifeq1d |
|
| 25 |
24
|
mpteq2dv |
|
| 26 |
25 1
|
eqtr4di |
|
| 27 |
26
|
seqeq3d |
|
| 28 |
2
|
fveq2d |
|
| 29 |
27 28
|
fveq12d |
|
| 30 |
11 29
|
oveq12d |
|
| 31 |
3 7 30
|
ifbieq12d |
|
| 32 |
|
df-lgs |
|
| 33 |
|
1nn0 |
|
| 34 |
|
0nn0 |
|
| 35 |
33 34
|
ifcli |
|
| 36 |
35
|
elexi |
|
| 37 |
|
ovex |
|
| 38 |
36 37
|
ifex |
|
| 39 |
31 32 38
|
ovmpoa |
|