Metamath Proof Explorer


Theorem lgsval2

Description: The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime 2 ). (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgsval2 A P A / L P = if P = 2 if 2 A 0 if A mod 8 1 7 1 1 A P 1 2 + 1 mod P 1

Proof

Step Hyp Ref Expression
1 eqid n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt P 1 = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt P 1
2 1 lgsval2lem A P A / L P = if P = 2 if 2 A 0 if A mod 8 1 7 1 1 A P 1 2 + 1 mod P 1