| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsval.1 |
|
| 2 |
|
prmz |
|
| 3 |
1
|
lgsval |
|
| 4 |
2 3
|
sylan2 |
|
| 5 |
|
prmnn |
|
| 6 |
5
|
adantl |
|
| 7 |
6
|
nnne0d |
|
| 8 |
7
|
neneqd |
|
| 9 |
8
|
iffalsed |
|
| 10 |
6
|
nnnn0d |
|
| 11 |
10
|
nn0ge0d |
|
| 12 |
|
0re |
|
| 13 |
6
|
nnred |
|
| 14 |
|
lenlt |
|
| 15 |
12 13 14
|
sylancr |
|
| 16 |
11 15
|
mpbid |
|
| 17 |
16
|
intnanrd |
|
| 18 |
17
|
iffalsed |
|
| 19 |
13 11
|
absidd |
|
| 20 |
19
|
fveq2d |
|
| 21 |
|
1z |
|
| 22 |
|
prmuz2 |
|
| 23 |
22
|
adantl |
|
| 24 |
|
df-2 |
|
| 25 |
24
|
fveq2i |
|
| 26 |
23 25
|
eleqtrdi |
|
| 27 |
|
seqm1 |
|
| 28 |
21 26 27
|
sylancr |
|
| 29 |
|
1t1e1 |
|
| 30 |
29
|
a1i |
|
| 31 |
|
uz2m1nn |
|
| 32 |
23 31
|
syl |
|
| 33 |
|
nnuz |
|
| 34 |
32 33
|
eleqtrdi |
|
| 35 |
|
elfznn |
|
| 36 |
35
|
adantl |
|
| 37 |
1
|
lgsfval |
|
| 38 |
36 37
|
syl |
|
| 39 |
|
elfzelz |
|
| 40 |
39
|
zred |
|
| 41 |
40
|
ltm1d |
|
| 42 |
|
peano2rem |
|
| 43 |
40 42
|
syl |
|
| 44 |
|
elfzle2 |
|
| 45 |
40 43 44
|
lensymd |
|
| 46 |
41 45
|
pm2.65i |
|
| 47 |
|
eleq1 |
|
| 48 |
46 47
|
mtbiri |
|
| 49 |
48
|
con2i |
|
| 50 |
49
|
ad2antlr |
|
| 51 |
|
prmuz2 |
|
| 52 |
|
simpllr |
|
| 53 |
|
dvdsprm |
|
| 54 |
51 52 53
|
syl2an2 |
|
| 55 |
50 54
|
mtbird |
|
| 56 |
|
simpr |
|
| 57 |
6
|
ad2antrr |
|
| 58 |
|
pceq0 |
|
| 59 |
56 57 58
|
syl2anc |
|
| 60 |
55 59
|
mpbird |
|
| 61 |
60
|
oveq2d |
|
| 62 |
|
0z |
|
| 63 |
|
neg1z |
|
| 64 |
21 63
|
ifcli |
|
| 65 |
62 64
|
ifcli |
|
| 66 |
65
|
a1i |
|
| 67 |
|
simpl |
|
| 68 |
67
|
ad2antrr |
|
| 69 |
|
simplr |
|
| 70 |
|
simpr |
|
| 71 |
70
|
neqned |
|
| 72 |
|
eldifsn |
|
| 73 |
69 71 72
|
sylanbrc |
|
| 74 |
|
oddprm |
|
| 75 |
73 74
|
syl |
|
| 76 |
75
|
nnnn0d |
|
| 77 |
|
zexpcl |
|
| 78 |
68 76 77
|
syl2anc |
|
| 79 |
78
|
peano2zd |
|
| 80 |
|
prmnn |
|
| 81 |
80
|
ad2antlr |
|
| 82 |
79 81
|
zmodcld |
|
| 83 |
82
|
nn0zd |
|
| 84 |
|
peano2zm |
|
| 85 |
83 84
|
syl |
|
| 86 |
66 85
|
ifclda |
|
| 87 |
86
|
zcnd |
|
| 88 |
87
|
adantlr |
|
| 89 |
88
|
exp0d |
|
| 90 |
61 89
|
eqtrd |
|
| 91 |
90
|
ifeq1da |
|
| 92 |
|
ifid |
|
| 93 |
91 92
|
eqtrdi |
|
| 94 |
38 93
|
eqtrd |
|
| 95 |
30 34 94
|
seqid3 |
|
| 96 |
95
|
oveq1d |
|
| 97 |
2
|
adantl |
|
| 98 |
1
|
lgsfcl |
|
| 99 |
67 97 7 98
|
syl3anc |
|
| 100 |
99 6
|
ffvelcdmd |
|
| 101 |
100
|
zcnd |
|
| 102 |
101
|
mullidd |
|
| 103 |
28 96 102
|
3eqtrd |
|
| 104 |
20 103
|
eqtrd |
|
| 105 |
18 104
|
oveq12d |
|
| 106 |
1
|
lgsfval |
|
| 107 |
6 106
|
syl |
|
| 108 |
|
iftrue |
|
| 109 |
108
|
adantl |
|
| 110 |
6
|
nncnd |
|
| 111 |
110
|
exp1d |
|
| 112 |
111
|
oveq2d |
|
| 113 |
|
simpr |
|
| 114 |
|
pcid |
|
| 115 |
113 21 114
|
sylancl |
|
| 116 |
112 115
|
eqtr3d |
|
| 117 |
116
|
oveq2d |
|
| 118 |
|
eqeq1 |
|
| 119 |
|
oveq1 |
|
| 120 |
119
|
oveq1d |
|
| 121 |
120
|
oveq2d |
|
| 122 |
121
|
oveq1d |
|
| 123 |
|
id |
|
| 124 |
122 123
|
oveq12d |
|
| 125 |
124
|
oveq1d |
|
| 126 |
118 125
|
ifbieq2d |
|
| 127 |
126
|
eleq1d |
|
| 128 |
87
|
ralrimiva |
|
| 129 |
127 128 113
|
rspcdva |
|
| 130 |
129
|
exp1d |
|
| 131 |
117 130
|
eqtrd |
|
| 132 |
107 109 131
|
3eqtrd |
|
| 133 |
105 102 132
|
3eqtrd |
|
| 134 |
4 9 133
|
3eqtrd |
|