Metamath Proof Explorer


Theorem lgsval4

Description: Restate lgsval for nonzero N , where the function F has been abbreviated into a self-referential expression taking the value of /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval4.1 F = n if n A / L n n pCnt N 1
Assertion lgsval4 A N N 0 A / L N = if N < 0 A < 0 1 1 seq 1 × F N

Proof

Step Hyp Ref Expression
1 lgsval4.1 F = n if n A / L n n pCnt N 1
2 eqid n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
3 2 lgsval A N A / L N = if N = 0 if A 2 = 1 1 0 if N < 0 A < 0 1 1 seq 1 × n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 N
4 3 3adant3 A N N 0 A / L N = if N = 0 if A 2 = 1 1 0 if N < 0 A < 0 1 1 seq 1 × n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 N
5 simp3 A N N 0 N 0
6 5 neneqd A N N 0 ¬ N = 0
7 6 iffalsed A N N 0 if N = 0 if A 2 = 1 1 0 if N < 0 A < 0 1 1 seq 1 × n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 N = if N < 0 A < 0 1 1 seq 1 × n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 N
8 2 lgsval4lem A N N 0 n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 = n if n A / L n n pCnt N 1
9 8 1 eqtr4di A N N 0 n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 = F
10 9 seqeq3d A N N 0 seq 1 × n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 = seq 1 × F
11 10 fveq1d A N N 0 seq 1 × n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 N = seq 1 × F N
12 11 oveq2d A N N 0 if N < 0 A < 0 1 1 seq 1 × n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1 N = if N < 0 A < 0 1 1 seq 1 × F N
13 4 7 12 3eqtrd A N N 0 A / L N = if N < 0 A < 0 1 1 seq 1 × F N