Metamath Proof Explorer


Theorem lgsval4lem

Description: Lemma for lgsval4 . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval.1 F = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
Assertion lgsval4lem A N N 0 F = n if n A / L n n pCnt N 1

Proof

Step Hyp Ref Expression
1 lgsval.1 F = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
2 eqid m if m if m = 2 if 2 A 0 if A mod 8 1 7 1 1 A m 1 2 + 1 mod m 1 m pCnt n 1 = m if m if m = 2 if 2 A 0 if A mod 8 1 7 1 1 A m 1 2 + 1 mod m 1 m pCnt n 1
3 2 lgsval2lem A n A / L n = if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1
4 3 3ad2antl1 A N N 0 n A / L n = if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1
5 4 oveq1d A N N 0 n A / L n n pCnt N = if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N
6 5 ifeq1da A N N 0 if n A / L n n pCnt N 1 = if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
7 6 mpteq2dv A N N 0 n if n A / L n n pCnt N 1 = n if n if n = 2 if 2 A 0 if A mod 8 1 7 1 1 A n 1 2 + 1 mod n 1 n pCnt N 1
8 1 7 eqtr4id A N N 0 F = n if n A / L n n pCnt N 1