Metamath Proof Explorer


Theorem lhop1lem

Description: Lemma for lhop1 . (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses lhop1.a φ A
lhop1.b φ B *
lhop1.l φ A < B
lhop1.f φ F : A B
lhop1.g φ G : A B
lhop1.if φ dom F = A B
lhop1.ig φ dom G = A B
lhop1.f0 φ 0 F lim A
lhop1.g0 φ 0 G lim A
lhop1.gn0 φ ¬ 0 ran G
lhop1.gd0 φ ¬ 0 ran G
lhop1.c φ C z A B F z G z lim A
lhop1lem.e φ E +
lhop1lem.d φ D
lhop1lem.db φ D B
lhop1lem.x φ X A D
lhop1lem.t φ t A D F t G t C < E
lhop1lem.r R = A + r 2
Assertion lhop1lem φ F X G X C < 2 E

Proof

Step Hyp Ref Expression
1 lhop1.a φ A
2 lhop1.b φ B *
3 lhop1.l φ A < B
4 lhop1.f φ F : A B
5 lhop1.g φ G : A B
6 lhop1.if φ dom F = A B
7 lhop1.ig φ dom G = A B
8 lhop1.f0 φ 0 F lim A
9 lhop1.g0 φ 0 G lim A
10 lhop1.gn0 φ ¬ 0 ran G
11 lhop1.gd0 φ ¬ 0 ran G
12 lhop1.c φ C z A B F z G z lim A
13 lhop1lem.e φ E +
14 lhop1lem.d φ D
15 lhop1lem.db φ D B
16 lhop1lem.x φ X A D
17 lhop1lem.t φ t A D F t G t C < E
18 lhop1lem.r R = A + r 2
19 iooss2 B * D B A D A B
20 2 15 19 syl2anc φ A D A B
21 20 16 sseldd φ X A B
22 4 21 ffvelrnd φ F X
23 22 recnd φ F X
24 5 21 ffvelrnd φ G X
25 24 recnd φ G X
26 5 ffnd φ G Fn A B
27 fnfvelrn G Fn A B X A B G X ran G
28 26 21 27 syl2anc φ G X ran G
29 eleq1 G X = 0 G X ran G 0 ran G
30 28 29 syl5ibcom φ G X = 0 0 ran G
31 30 necon3bd φ ¬ 0 ran G G X 0
32 10 31 mpd φ G X 0
33 23 25 32 divcld φ F X G X
34 limccl z A B F z G z lim A
35 34 12 sselid φ C
36 33 35 subcld φ F X G X C
37 36 abscld φ F X G X C
38 13 rpred φ E
39 2re 2
40 39 a1i φ 2
41 40 38 remulcld φ 2 E
42 cnxmet abs ∞Met
43 42 a1i φ v TopOpen fld A v abs ∞Met
44 simprl φ v TopOpen fld A v v TopOpen fld
45 simprr φ v TopOpen fld A v A v
46 eliooord X A D A < X X < D
47 16 46 syl φ A < X X < D
48 47 simpld φ A < X
49 ioossre A D
50 49 16 sselid φ X
51 difrp A X A < X X A +
52 1 50 51 syl2anc φ A < X X A +
53 48 52 mpbid φ X A +
54 53 adantr φ v TopOpen fld A v X A +
55 eqid TopOpen fld = TopOpen fld
56 55 cnfldtopn TopOpen fld = MetOpen abs
57 56 mopni3 abs ∞Met v TopOpen fld A v X A + r + r < X A A ball abs r v
58 43 44 45 54 57 syl31anc φ v TopOpen fld A v r + r < X A A ball abs r v
59 ssrin A ball abs r v A ball abs r A X v A X
60 lbioo ¬ A A X
61 disjsn A X A = ¬ A A X
62 60 61 mpbir A X A =
63 disj3 A X A = A X = A X A
64 62 63 mpbi A X = A X A
65 64 ineq2i v A X = v A X A
66 59 65 sseqtrdi A ball abs r v A ball abs r A X v A X A
67 1 adantr φ r + r < X A A
68 simprl φ r + r < X A r +
69 68 rpred φ r + r < X A r
70 69 rehalfcld φ r + r < X A r 2
71 67 70 readdcld φ r + r < X A A + r 2
72 18 71 eqeltrid φ r + r < X A R
73 72 recnd φ r + r < X A R
74 1 recnd φ A
75 74 adantr φ r + r < X A A
76 eqid abs = abs
77 76 cnmetdval R A R abs A = R A
78 73 75 77 syl2anc φ r + r < X A R abs A = R A
79 18 oveq1i R A = A + r 2 - A
80 69 recnd φ r + r < X A r
81 80 halfcld φ r + r < X A r 2
82 75 81 pncan2d φ r + r < X A A + r 2 - A = r 2
83 79 82 eqtrid φ r + r < X A R A = r 2
84 83 fveq2d φ r + r < X A R A = r 2
85 68 rphalfcld φ r + r < X A r 2 +
86 85 rpred φ r + r < X A r 2
87 85 rpge0d φ r + r < X A 0 r 2
88 86 87 absidd φ r + r < X A r 2 = r 2
89 78 84 88 3eqtrd φ r + r < X A R abs A = r 2
90 rphalflt r + r 2 < r
91 68 90 syl φ r + r < X A r 2 < r
92 89 91 eqbrtrd φ r + r < X A R abs A < r
93 42 a1i φ r + r < X A abs ∞Met
94 69 rexrd φ r + r < X A r *
95 elbl3 abs ∞Met r * A R R A ball abs r R abs A < r
96 93 94 75 73 95 syl22anc φ r + r < X A R A ball abs r R abs A < r
97 92 96 mpbird φ r + r < X A R A ball abs r
98 67 85 ltaddrpd φ r + r < X A A < A + r 2
99 98 18 breqtrrdi φ r + r < X A A < R
100 50 adantr φ r + r < X A X
101 100 67 resubcld φ r + r < X A X A
102 simprr φ r + r < X A r < X A
103 86 69 101 91 102 lttrd φ r + r < X A r 2 < X A
104 67 86 100 ltaddsub2d φ r + r < X A A + r 2 < X r 2 < X A
105 103 104 mpbird φ r + r < X A A + r 2 < X
106 18 105 eqbrtrid φ r + r < X A R < X
107 67 rexrd φ r + r < X A A *
108 50 rexrd φ X *
109 108 adantr φ r + r < X A X *
110 elioo2 A * X * R A X R A < R R < X
111 107 109 110 syl2anc φ r + r < X A R A X R A < R R < X
112 72 99 106 111 mpbir3and φ r + r < X A R A X
113 97 112 elind φ r + r < X A R A ball abs r A X
114 23 adantr φ r + r < X A F X
115 4 adantr φ r + r < X A F : A B
116 14 rexrd φ D *
117 47 simprd φ X < D
118 50 14 117 ltled φ X D
119 108 116 2 118 15 xrletrd φ X B
120 iooss2 B * X B A X A B
121 2 119 120 syl2anc φ A X A B
122 121 adantr φ r + r < X A A X A B
123 122 112 sseldd φ r + r < X A R A B
124 115 123 ffvelrnd φ r + r < X A F R
125 124 recnd φ r + r < X A F R
126 114 125 subcld φ r + r < X A F X F R
127 25 adantr φ r + r < X A G X
128 5 adantr φ r + r < X A G : A B
129 128 123 ffvelrnd φ r + r < X A G R
130 129 recnd φ r + r < X A G R
131 127 130 subcld φ r + r < X A G X G R
132 fveq2 z = R G z = G R
133 132 oveq2d z = R G X G z = G X G R
134 133 neeq1d z = R G X G z 0 G X G R 0
135 11 adantr φ z A X ¬ 0 ran G
136 25 adantr φ z A X G X
137 121 sselda φ z A X z A B
138 5 ffvelrnda φ z A B G z
139 137 138 syldan φ z A X G z
140 139 recnd φ z A X G z
141 136 140 subeq0ad φ z A X G X G z = 0 G X = G z
142 ioossre A B
143 142 137 sselid φ z A X z
144 143 adantr φ z A X G X = G z z
145 50 ad2antrr φ z A X G X = G z X
146 eliooord z A X A < z z < X
147 146 adantl φ z A X A < z z < X
148 147 simprd φ z A X z < X
149 148 adantr φ z A X G X = G z z < X
150 1 rexrd φ A *
151 150 adantr φ z A X A *
152 2 adantr φ z A X B *
153 147 simpld φ z A X A < z
154 108 116 2 117 15 xrltletrd φ X < B
155 154 adantr φ z A X X < B
156 iccssioo A * B * A < z X < B z X A B
157 151 152 153 155 156 syl22anc φ z A X z X A B
158 157 adantr φ z A X G X = G z z X A B
159 ax-resscn
160 159 a1i φ
161 fss G : A B G : A B
162 5 159 161 sylancl φ G : A B
163 142 a1i φ A B
164 dvcn G : A B A B dom G = A B G : A B cn
165 160 162 163 7 164 syl31anc φ G : A B cn
166 cncffvrn G : A B cn G : A B cn G : A B
167 159 165 166 sylancr φ G : A B cn G : A B
168 5 167 mpbird φ G : A B cn
169 168 ad2antrr φ z A X G X = G z G : A B cn
170 rescncf z X A B G : A B cn G z X : z X cn
171 158 169 170 sylc φ z A X G X = G z G z X : z X cn
172 159 a1i φ z A X G X = G z
173 162 ad2antrr φ z A X G X = G z G : A B
174 142 a1i φ z A X G X = G z A B
175 158 142 sstrdi φ z A X G X = G z z X
176 55 tgioo2 topGen ran . = TopOpen fld 𝑡
177 55 176 dvres G : A B A B z X D G z X = G int topGen ran . z X
178 172 173 174 175 177 syl22anc φ z A X G X = G z D G z X = G int topGen ran . z X
179 iccntr z X int topGen ran . z X = z X
180 144 145 179 syl2anc φ z A X G X = G z int topGen ran . z X = z X
181 180 reseq2d φ z A X G X = G z G int topGen ran . z X = G z X
182 178 181 eqtrd φ z A X G X = G z D G z X = G z X
183 182 dmeqd φ z A X G X = G z dom G z X = dom G z X
184 ioossicc z X z X
185 184 158 sstrid φ z A X G X = G z z X A B
186 7 ad2antrr φ z A X G X = G z dom G = A B
187 185 186 sseqtrrd φ z A X G X = G z z X dom G
188 ssdmres z X dom G dom G z X = z X
189 187 188 sylib φ z A X G X = G z dom G z X = z X
190 183 189 eqtrd φ z A X G X = G z dom G z X = z X
191 143 rexrd φ z A X z *
192 108 adantr φ z A X X *
193 50 adantr φ z A X X
194 143 193 148 ltled φ z A X z X
195 ubicc2 z * X * z X X z X
196 191 192 194 195 syl3anc φ z A X X z X
197 196 fvresd φ z A X G z X X = G X
198 lbicc2 z * X * z X z z X
199 191 192 194 198 syl3anc φ z A X z z X
200 199 fvresd φ z A X G z X z = G z
201 197 200 eqeq12d φ z A X G z X X = G z X z G X = G z
202 201 biimpar φ z A X G X = G z G z X X = G z X z
203 202 eqcomd φ z A X G X = G z G z X z = G z X X
204 144 145 149 171 190 203 rolle φ z A X G X = G z w z X G z X w = 0
205 182 fveq1d φ z A X G X = G z G z X w = G z X w
206 fvres w z X G z X w = G w
207 205 206 sylan9eq φ z A X G X = G z w z X G z X w = G w
208 dvf G : dom G
209 7 feq2d φ G : dom G G : A B
210 208 209 mpbii φ G : A B
211 210 ad2antrr φ z A X G X = G z G : A B
212 211 ffnd φ z A X G X = G z G Fn A B
213 212 adantr φ z A X G X = G z w z X G Fn A B
214 185 sselda φ z A X G X = G z w z X w A B
215 fnfvelrn G Fn A B w A B G w ran G
216 213 214 215 syl2anc φ z A X G X = G z w z X G w ran G
217 207 216 eqeltrd φ z A X G X = G z w z X G z X w ran G
218 eleq1 G z X w = 0 G z X w ran G 0 ran G
219 217 218 syl5ibcom φ z A X G X = G z w z X G z X w = 0 0 ran G
220 219 rexlimdva φ z A X G X = G z w z X G z X w = 0 0 ran G
221 204 220 mpd φ z A X G X = G z 0 ran G
222 221 ex φ z A X G X = G z 0 ran G
223 141 222 sylbid φ z A X G X G z = 0 0 ran G
224 223 necon3bd φ z A X ¬ 0 ran G G X G z 0
225 135 224 mpd φ z A X G X G z 0
226 225 ralrimiva φ z A X G X G z 0
227 226 adantr φ r + r < X A z A X G X G z 0
228 134 227 112 rspcdva φ r + r < X A G X G R 0
229 126 131 228 divcld φ r + r < X A F X F R G X G R
230 35 adantr φ r + r < X A C
231 229 230 subcld φ r + r < X A F X F R G X G R C
232 231 abscld φ r + r < X A F X F R G X G R C
233 38 adantr φ r + r < X A E
234 116 adantr φ r + r < X A D *
235 117 adantr φ r + r < X A X < D
236 iccssioo A * D * A < R X < D R X A D
237 107 234 99 235 236 syl22anc φ r + r < X A R X A D
238 20 adantr φ r + r < X A A D A B
239 237 238 sstrd φ r + r < X A R X A B
240 fss F : A B F : A B
241 4 159 240 sylancl φ F : A B
242 dvcn F : A B A B dom F = A B F : A B cn
243 160 241 163 6 242 syl31anc φ F : A B cn
244 cncffvrn F : A B cn F : A B cn F : A B
245 159 243 244 sylancr φ F : A B cn F : A B
246 4 245 mpbird φ F : A B cn
247 246 adantr φ r + r < X A F : A B cn
248 rescncf R X A B F : A B cn F R X : R X cn
249 239 247 248 sylc φ r + r < X A F R X : R X cn
250 168 adantr φ r + r < X A G : A B cn
251 rescncf R X A B G : A B cn G R X : R X cn
252 239 250 251 sylc φ r + r < X A G R X : R X cn
253 159 a1i φ r + r < X A
254 241 adantr φ r + r < X A F : A B
255 142 a1i φ r + r < X A A B
256 iccssre R X R X
257 72 100 256 syl2anc φ r + r < X A R X
258 55 176 dvres F : A B A B R X D F R X = F int topGen ran . R X
259 253 254 255 257 258 syl22anc φ r + r < X A D F R X = F int topGen ran . R X
260 iccntr R X int topGen ran . R X = R X
261 72 100 260 syl2anc φ r + r < X A int topGen ran . R X = R X
262 261 reseq2d φ r + r < X A F int topGen ran . R X = F R X
263 259 262 eqtrd φ r + r < X A D F R X = F R X
264 263 dmeqd φ r + r < X A dom F R X = dom F R X
265 67 72 99 ltled φ r + r < X A A R
266 iooss1 A * A R R X A X
267 107 265 266 syl2anc φ r + r < X A R X A X
268 118 adantr φ r + r < X A X D
269 iooss2 D * X D A X A D
270 234 268 269 syl2anc φ r + r < X A A X A D
271 267 270 sstrd φ r + r < X A R X A D
272 271 238 sstrd φ r + r < X A R X A B
273 6 adantr φ r + r < X A dom F = A B
274 272 273 sseqtrrd φ r + r < X A R X dom F
275 ssdmres R X dom F dom F R X = R X
276 274 275 sylib φ r + r < X A dom F R X = R X
277 264 276 eqtrd φ r + r < X A dom F R X = R X
278 162 adantr φ r + r < X A G : A B
279 55 176 dvres G : A B A B R X D G R X = G int topGen ran . R X
280 253 278 255 257 279 syl22anc φ r + r < X A D G R X = G int topGen ran . R X
281 261 reseq2d φ r + r < X A G int topGen ran . R X = G R X
282 280 281 eqtrd φ r + r < X A D G R X = G R X
283 282 dmeqd φ r + r < X A dom G R X = dom G R X
284 7 adantr φ r + r < X A dom G = A B
285 272 284 sseqtrrd φ r + r < X A R X dom G
286 ssdmres R X dom G dom G R X = R X
287 285 286 sylib φ r + r < X A dom G R X = R X
288 283 287 eqtrd φ r + r < X A dom G R X = R X
289 72 100 106 249 252 277 288 cmvth φ r + r < X A w R X F R X X F R X R G R X w = G R X X G R X R F R X w
290 72 rexrd φ r + r < X A R *
291 290 adantr φ r + r < X A w R X R *
292 108 ad2antrr φ r + r < X A w R X X *
293 72 100 106 ltled φ r + r < X A R X
294 293 adantr φ r + r < X A w R X R X
295 ubicc2 R * X * R X X R X
296 291 292 294 295 syl3anc φ r + r < X A w R X X R X
297 296 fvresd φ r + r < X A w R X F R X X = F X
298 lbicc2 R * X * R X R R X
299 291 292 294 298 syl3anc φ r + r < X A w R X R R X
300 299 fvresd φ r + r < X A w R X F R X R = F R
301 297 300 oveq12d φ r + r < X A w R X F R X X F R X R = F X F R
302 282 fveq1d φ r + r < X A G R X w = G R X w
303 fvres w R X G R X w = G w
304 302 303 sylan9eq φ r + r < X A w R X G R X w = G w
305 301 304 oveq12d φ r + r < X A w R X F R X X F R X R G R X w = F X F R G w
306 296 fvresd φ r + r < X A w R X G R X X = G X
307 299 fvresd φ r + r < X A w R X G R X R = G R
308 306 307 oveq12d φ r + r < X A w R X G R X X G R X R = G X G R
309 263 fveq1d φ r + r < X A F R X w = F R X w
310 fvres w R X F R X w = F w
311 309 310 sylan9eq φ r + r < X A w R X F R X w = F w
312 308 311 oveq12d φ r + r < X A w R X G R X X G R X R F R X w = G X G R F w
313 131 adantr φ r + r < X A w R X G X G R
314 dvf F : dom F
315 6 feq2d φ F : dom F F : A B
316 314 315 mpbii φ F : A B
317 316 ad2antrr φ r + r < X A w R X F : A B
318 272 sselda φ r + r < X A w R X w A B
319 317 318 ffvelrnd φ r + r < X A w R X F w
320 313 319 mulcomd φ r + r < X A w R X G X G R F w = F w G X G R
321 312 320 eqtrd φ r + r < X A w R X G R X X G R X R F R X w = F w G X G R
322 305 321 eqeq12d φ r + r < X A w R X F R X X F R X R G R X w = G R X X G R X R F R X w F X F R G w = F w G X G R
323 126 adantr φ r + r < X A w R X F X F R
324 210 ad2antrr φ r + r < X A w R X G : A B
325 324 318 ffvelrnd φ r + r < X A w R X G w
326 228 adantr φ r + r < X A w R X G X G R 0
327 11 ad2antrr φ r + r < X A w R X ¬ 0 ran G
328 324 ffnd φ r + r < X A w R X G Fn A B
329 328 318 215 syl2anc φ r + r < X A w R X G w ran G
330 eleq1 G w = 0 G w ran G 0 ran G
331 329 330 syl5ibcom φ r + r < X A w R X G w = 0 0 ran G
332 331 necon3bd φ r + r < X A w R X ¬ 0 ran G G w 0
333 327 332 mpd φ r + r < X A w R X G w 0
334 323 313 319 325 326 333 divmuleqd φ r + r < X A w R X F X F R G X G R = F w G w F X F R G w = F w G X G R
335 322 334 bitr4d φ r + r < X A w R X F R X X F R X R G R X w = G R X X G R X R F R X w F X F R G X G R = F w G w
336 335 rexbidva φ r + r < X A w R X F R X X F R X R G R X w = G R X X G R X R F R X w w R X F X F R G X G R = F w G w
337 289 336 mpbid φ r + r < X A w R X F X F R G X G R = F w G w
338 fveq2 t = w F t = F w
339 fveq2 t = w G t = G w
340 338 339 oveq12d t = w F t G t = F w G w
341 340 fvoveq1d t = w F t G t C = F w G w C
342 341 breq1d t = w F t G t C < E F w G w C < E
343 17 ad2antrr φ r + r < X A w R X t A D F t G t C < E
344 271 sselda φ r + r < X A w R X w A D
345 342 343 344 rspcdva φ r + r < X A w R X F w G w C < E
346 fvoveq1 F X F R G X G R = F w G w F X F R G X G R C = F w G w C
347 346 breq1d F X F R G X G R = F w G w F X F R G X G R C < E F w G w C < E
348 345 347 syl5ibrcom φ r + r < X A w R X F X F R G X G R = F w G w F X F R G X G R C < E
349 348 rexlimdva φ r + r < X A w R X F X F R G X G R = F w G w F X F R G X G R C < E
350 337 349 mpd φ r + r < X A F X F R G X G R C < E
351 232 233 350 ltled φ r + r < X A F X F R G X G R C E
352 fveq2 u = R F u = F R
353 352 oveq2d u = R F X F u = F X F R
354 fveq2 u = R G u = G R
355 354 oveq2d u = R G X G u = G X G R
356 353 355 oveq12d u = R F X F u G X G u = F X F R G X G R
357 356 fvoveq1d u = R F X F u G X G u C = F X F R G X G R C
358 357 breq1d u = R F X F u G X G u C E F X F R G X G R C E
359 358 rspcev R A ball abs r A X F X F R G X G R C E u A ball abs r A X F X F u G X G u C E
360 113 351 359 syl2anc φ r + r < X A u A ball abs r A X F X F u G X G u C E
361 360 adantlr φ v TopOpen fld A v r + r < X A u A ball abs r A X F X F u G X G u C E
362 ssrexv A ball abs r A X v A X A u A ball abs r A X F X F u G X G u C E u v A X A F X F u G X G u C E
363 66 361 362 syl2imc φ v TopOpen fld A v r + r < X A A ball abs r v u v A X A F X F u G X G u C E
364 363 anassrs φ v TopOpen fld A v r + r < X A A ball abs r v u v A X A F X F u G X G u C E
365 364 expimpd φ v TopOpen fld A v r + r < X A A ball abs r v u v A X A F X F u G X G u C E
366 365 rexlimdva φ v TopOpen fld A v r + r < X A A ball abs r v u v A X A F X F u G X G u C E
367 58 366 mpd φ v TopOpen fld A v u v A X A F X F u G X G u C E
368 inss2 v A X A A X A
369 difss A X A A X
370 368 369 sstri v A X A A X
371 370 sseli u v A X A u A X
372 fveq2 z = u F z = F u
373 372 oveq2d z = u F X F z = F X F u
374 fveq2 z = u G z = G u
375 374 oveq2d z = u G X G z = G X G u
376 373 375 oveq12d z = u F X F z G X G z = F X F u G X G u
377 eqid z A X F X F z G X G z = z A X F X F z G X G z
378 ovex F X F u G X G u V
379 376 377 378 fvmpt u A X z A X F X F z G X G z u = F X F u G X G u
380 379 fvoveq1d u A X z A X F X F z G X G z u C = F X F u G X G u C
381 380 breq1d u A X z A X F X F z G X G z u C E F X F u G X G u C E
382 371 381 syl u v A X A z A X F X F z G X G z u C E F X F u G X G u C E
383 382 rexbiia u v A X A z A X F X F z G X G z u C E u v A X A F X F u G X G u C E
384 367 383 sylibr φ v TopOpen fld A v u v A X A z A X F X F z G X G z u C E
385 ovex F X F z G X G z V
386 385 377 fnmpti z A X F X F z G X G z Fn A X
387 fvoveq1 x = z A X F X F z G X G z u x C = z A X F X F z G X G z u C
388 387 breq1d x = z A X F X F z G X G z u x C E z A X F X F z G X G z u C E
389 388 rexima z A X F X F z G X G z Fn A X v A X A A X x z A X F X F z G X G z v A X A x C E u v A X A z A X F X F z G X G z u C E
390 386 370 389 mp2an x z A X F X F z G X G z v A X A x C E u v A X A z A X F X F z G X G z u C E
391 384 390 sylibr φ v TopOpen fld A v x z A X F X F z G X G z v A X A x C E
392 dfrex2 x z A X F X F z G X G z v A X A x C E ¬ x z A X F X F z G X G z v A X A ¬ x C E
393 391 392 sylib φ v TopOpen fld A v ¬ x z A X F X F z G X G z v A X A ¬ x C E
394 ssrab z A X F X F z G X G z v A X A x | ¬ x C E z A X F X F z G X G z v A X A x z A X F X F z G X G z v A X A ¬ x C E
395 394 simprbi z A X F X F z G X G z v A X A x | ¬ x C E x z A X F X F z G X G z v A X A ¬ x C E
396 393 395 nsyl φ v TopOpen fld A v ¬ z A X F X F z G X G z v A X A x | ¬ x C E
397 396 expr φ v TopOpen fld A v ¬ z A X F X F z G X G z v A X A x | ¬ x C E
398 397 ralrimiva φ v TopOpen fld A v ¬ z A X F X F z G X G z v A X A x | ¬ x C E
399 ralinexa v TopOpen fld A v ¬ z A X F X F z G X G z v A X A x | ¬ x C E ¬ v TopOpen fld A v z A X F X F z G X G z v A X A x | ¬ x C E
400 398 399 sylib φ ¬ v TopOpen fld A v z A X F X F z G X G z v A X A x | ¬ x C E
401 fvoveq1 x = F X G X x C = F X G X C
402 401 breq1d x = F X G X x C E F X G X C E
403 402 notbid x = F X G X ¬ x C E ¬ F X G X C E
404 403 elrab3 F X G X F X G X x | ¬ x C E ¬ F X G X C E
405 33 404 syl φ F X G X x | ¬ x C E ¬ F X G X C E
406 eleq2 u = x | ¬ x C E F X G X u F X G X x | ¬ x C E
407 sseq2 u = x | ¬ x C E z A X F X F z G X G z v A X A u z A X F X F z G X G z v A X A x | ¬ x C E
408 407 anbi2d u = x | ¬ x C E A v z A X F X F z G X G z v A X A u A v z A X F X F z G X G z v A X A x | ¬ x C E
409 408 rexbidv u = x | ¬ x C E v TopOpen fld A v z A X F X F z G X G z v A X A u v TopOpen fld A v z A X F X F z G X G z v A X A x | ¬ x C E
410 406 409 imbi12d u = x | ¬ x C E F X G X u v TopOpen fld A v z A X F X F z G X G z v A X A u F X G X x | ¬ x C E v TopOpen fld A v z A X F X F z G X G z v A X A x | ¬ x C E
411 23 adantr φ z A X F X
412 4 ffvelrnda φ z A B F z
413 137 412 syldan φ z A X F z
414 413 recnd φ z A X F z
415 411 414 subcld φ z A X F X F z
416 136 140 subcld φ z A X G X G z
417 eldifsn G X G z 0 G X G z G X G z 0
418 416 225 417 sylanbrc φ z A X G X G z 0
419 ssidd φ
420 difss 0
421 420 a1i φ 0
422 55 cnfldtopon TopOpen fld TopOn
423 cnex V
424 423 difexi 0 V
425 txrest TopOpen fld TopOn TopOpen fld TopOn V 0 V TopOpen fld × t TopOpen fld 𝑡 × 0 = TopOpen fld 𝑡 × t TopOpen fld 𝑡 0
426 422 422 423 424 425 mp4an TopOpen fld × t TopOpen fld 𝑡 × 0 = TopOpen fld 𝑡 × t TopOpen fld 𝑡 0
427 unicntop = TopOpen fld
428 427 restid TopOpen fld TopOn TopOpen fld 𝑡 = TopOpen fld
429 422 428 ax-mp TopOpen fld 𝑡 = TopOpen fld
430 429 oveq1i TopOpen fld 𝑡 × t TopOpen fld 𝑡 0 = TopOpen fld × t TopOpen fld 𝑡 0
431 426 430 eqtr2i TopOpen fld × t TopOpen fld 𝑡 0 = TopOpen fld × t TopOpen fld 𝑡 × 0
432 23 subid1d φ F X 0 = F X
433 txtopon TopOpen fld TopOn TopOpen fld TopOn TopOpen fld × t TopOpen fld TopOn ×
434 422 422 433 mp2an TopOpen fld × t TopOpen fld TopOn ×
435 434 toponrestid TopOpen fld × t TopOpen fld = TopOpen fld × t TopOpen fld 𝑡 ×
436 limcresi z F X lim A z F X A X lim A
437 ioossre A X
438 resmpt A X z F X A X = z A X F X
439 437 438 ax-mp z F X A X = z A X F X
440 439 oveq1i z F X A X lim A = z A X F X lim A
441 436 440 sseqtri z F X lim A z A X F X lim A
442 cncfmptc F X z F X : cn
443 22 160 160 442 syl3anc φ z F X : cn
444 eqidd z = A F X = F X
445 443 1 444 cnmptlimc φ F X z F X lim A
446 441 445 sselid φ F X z A X F X lim A
447 limcresi F lim A F A X lim A
448 4 121 feqresmpt φ F A X = z A X F z
449 448 oveq1d φ F A X lim A = z A X F z lim A
450 447 449 sseqtrid φ F lim A z A X F z lim A
451 450 8 sseldd φ 0 z A X F z lim A
452 55 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
453 0cn 0
454 opelxpi F X 0 F X 0 ×
455 23 453 454 sylancl φ F X 0 ×
456 434 toponunii × = TopOpen fld × t TopOpen fld
457 456 cncnpi TopOpen fld × t TopOpen fld Cn TopOpen fld F X 0 × TopOpen fld × t TopOpen fld CnP TopOpen fld F X 0
458 452 455 457 sylancr φ TopOpen fld × t TopOpen fld CnP TopOpen fld F X 0
459 411 414 419 419 55 435 446 451 458 limccnp2 φ F X 0 z A X F X F z lim A
460 432 459 eqeltrrd φ F X z A X F X F z lim A
461 25 subid1d φ G X 0 = G X
462 limcresi z G X lim A z G X A X lim A
463 resmpt A X z G X A X = z A X G X
464 437 463 ax-mp z G X A X = z A X G X
465 464 oveq1i z G X A X lim A = z A X G X lim A
466 462 465 sseqtri z G X lim A z A X G X lim A
467 cncfmptc G X z G X : cn
468 24 160 160 467 syl3anc φ z G X : cn
469 eqidd z = A G X = G X
470 468 1 469 cnmptlimc φ G X z G X lim A
471 466 470 sselid φ G X z A X G X lim A
472 limcresi G lim A G A X lim A
473 5 121 feqresmpt φ G A X = z A X G z
474 473 oveq1d φ G A X lim A = z A X G z lim A
475 472 474 sseqtrid φ G lim A z A X G z lim A
476 475 9 sseldd φ 0 z A X G z lim A
477 opelxpi G X 0 G X 0 ×
478 25 453 477 sylancl φ G X 0 ×
479 456 cncnpi TopOpen fld × t TopOpen fld Cn TopOpen fld G X 0 × TopOpen fld × t TopOpen fld CnP TopOpen fld G X 0
480 452 478 479 sylancr φ TopOpen fld × t TopOpen fld CnP TopOpen fld G X 0
481 136 140 419 419 55 435 471 476 480 limccnp2 φ G X 0 z A X G X G z lim A
482 461 481 eqeltrrd φ G X z A X G X G z lim A
483 eqid TopOpen fld 𝑡 0 = TopOpen fld 𝑡 0
484 55 483 divcn ÷ TopOpen fld × t TopOpen fld 𝑡 0 Cn TopOpen fld
485 eldifsn G X 0 G X G X 0
486 25 32 485 sylanbrc φ G X 0
487 23 486 opelxpd φ F X G X × 0
488 resttopon TopOpen fld TopOn 0 TopOpen fld 𝑡 0 TopOn 0
489 422 420 488 mp2an TopOpen fld 𝑡 0 TopOn 0
490 txtopon TopOpen fld TopOn TopOpen fld 𝑡 0 TopOn 0 TopOpen fld × t TopOpen fld 𝑡 0 TopOn × 0
491 422 489 490 mp2an TopOpen fld × t TopOpen fld 𝑡 0 TopOn × 0
492 491 toponunii × 0 = TopOpen fld × t TopOpen fld 𝑡 0
493 492 cncnpi ÷ TopOpen fld × t TopOpen fld 𝑡 0 Cn TopOpen fld F X G X × 0 ÷ TopOpen fld × t TopOpen fld 𝑡 0 CnP TopOpen fld F X G X
494 484 487 493 sylancr φ ÷ TopOpen fld × t TopOpen fld 𝑡 0 CnP TopOpen fld F X G X
495 415 418 419 421 55 431 460 482 494 limccnp2 φ F X G X z A X F X F z G X G z lim A
496 415 416 225 divcld φ z A X F X F z G X G z
497 496 fmpttd φ z A X F X F z G X G z : A X
498 437 159 sstri A X
499 498 a1i φ A X
500 497 499 74 55 ellimc2 φ F X G X z A X F X F z G X G z lim A F X G X u TopOpen fld F X G X u v TopOpen fld A v z A X F X F z G X G z v A X A u
501 495 500 mpbid φ F X G X u TopOpen fld F X G X u v TopOpen fld A v z A X F X F z G X G z v A X A u
502 501 simprd φ u TopOpen fld F X G X u v TopOpen fld A v z A X F X F z G X G z v A X A u
503 notrab x | x C E = x | ¬ x C E
504 76 cnmetdval C x C abs x = C x
505 abssub C x C x = x C
506 504 505 eqtrd C x C abs x = x C
507 35 506 sylan φ x C abs x = x C
508 507 breq1d φ x C abs x E x C E
509 508 rabbidva φ x | C abs x E = x | x C E
510 42 a1i φ abs ∞Met
511 38 rexrd φ E *
512 eqid x | C abs x E = x | C abs x E
513 56 512 blcld abs ∞Met C E * x | C abs x E Clsd TopOpen fld
514 510 35 511 513 syl3anc φ x | C abs x E Clsd TopOpen fld
515 509 514 eqeltrrd φ x | x C E Clsd TopOpen fld
516 427 cldopn x | x C E Clsd TopOpen fld x | x C E TopOpen fld
517 515 516 syl φ x | x C E TopOpen fld
518 503 517 eqeltrrid φ x | ¬ x C E TopOpen fld
519 410 502 518 rspcdva φ F X G X x | ¬ x C E v TopOpen fld A v z A X F X F z G X G z v A X A x | ¬ x C E
520 405 519 sylbird φ ¬ F X G X C E v TopOpen fld A v z A X F X F z G X G z v A X A x | ¬ x C E
521 400 520 mt3d φ F X G X C E
522 38 recnd φ E
523 522 mulid2d φ 1 E = E
524 1red φ 1
525 1lt2 1 < 2
526 525 a1i φ 1 < 2
527 524 40 13 526 ltmul1dd φ 1 E < 2 E
528 523 527 eqbrtrrd φ E < 2 E
529 37 38 41 521 528 lelttrd φ F X G X C < 2 E