Metamath Proof Explorer


Theorem lhp0lt

Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses lhp0lt.s < ˙ = < K
lhp0lt.z 0 ˙ = 0. K
lhp0lt.h H = LHyp K
Assertion lhp0lt K HL W H 0 ˙ < ˙ W

Proof

Step Hyp Ref Expression
1 lhp0lt.s < ˙ = < K
2 lhp0lt.z 0 ˙ = 0. K
3 lhp0lt.h H = LHyp K
4 eqid Atoms K = Atoms K
5 1 4 3 lhpexlt K HL W H p Atoms K p < ˙ W
6 simp1l K HL W H p Atoms K p < ˙ W K HL
7 hlop K HL K OP
8 eqid Base K = Base K
9 8 2 op0cl K OP 0 ˙ Base K
10 6 7 9 3syl K HL W H p Atoms K p < ˙ W 0 ˙ Base K
11 8 4 atbase p Atoms K p Base K
12 11 3ad2ant2 K HL W H p Atoms K p < ˙ W p Base K
13 simp2 K HL W H p Atoms K p < ˙ W p Atoms K
14 eqid K = K
15 2 14 4 atcvr0 K HL p Atoms K 0 ˙ K p
16 6 13 15 syl2anc K HL W H p Atoms K p < ˙ W 0 ˙ K p
17 8 1 14 cvrlt K HL 0 ˙ Base K p Base K 0 ˙ K p 0 ˙ < ˙ p
18 6 10 12 16 17 syl31anc K HL W H p Atoms K p < ˙ W 0 ˙ < ˙ p
19 simp3 K HL W H p Atoms K p < ˙ W p < ˙ W
20 hlpos K HL K Poset
21 6 20 syl K HL W H p Atoms K p < ˙ W K Poset
22 simp1r K HL W H p Atoms K p < ˙ W W H
23 8 3 lhpbase W H W Base K
24 22 23 syl K HL W H p Atoms K p < ˙ W W Base K
25 8 1 plttr K Poset 0 ˙ Base K p Base K W Base K 0 ˙ < ˙ p p < ˙ W 0 ˙ < ˙ W
26 21 10 12 24 25 syl13anc K HL W H p Atoms K p < ˙ W 0 ˙ < ˙ p p < ˙ W 0 ˙ < ˙ W
27 18 19 26 mp2and K HL W H p Atoms K p < ˙ W 0 ˙ < ˙ W
28 27 rexlimdv3a K HL W H p Atoms K p < ˙ W 0 ˙ < ˙ W
29 5 28 mpd K HL W H 0 ˙ < ˙ W