Metamath Proof Explorer


Theorem lhp2at0

Description: Join and meet with different atoms under co-atom W . (Contributed by NM, 15-Jun-2013)

Ref Expression
Hypotheses lhp2at0.l ˙ = K
lhp2at0.j ˙ = join K
lhp2at0.m ˙ = meet K
lhp2at0.z 0 ˙ = 0. K
lhp2at0.a A = Atoms K
lhp2at0.h H = LHyp K
Assertion lhp2at0 K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U ˙ V = 0 ˙

Proof

Step Hyp Ref Expression
1 lhp2at0.l ˙ = K
2 lhp2at0.j ˙ = join K
3 lhp2at0.m ˙ = meet K
4 lhp2at0.z 0 ˙ = 0. K
5 lhp2at0.a A = Atoms K
6 lhp2at0.h H = LHyp K
7 simp11l K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W K HL
8 hlol K HL K OL
9 7 8 syl K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W K OL
10 simp12l K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P A
11 simp2l K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W U A
12 eqid Base K = Base K
13 12 2 5 hlatjcl K HL P A U A P ˙ U Base K
14 7 10 11 13 syl3anc K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U Base K
15 simp11r K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W W H
16 12 6 lhpbase W H W Base K
17 15 16 syl K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W W Base K
18 simp3l K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V A
19 12 5 atbase V A V Base K
20 18 19 syl K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V Base K
21 12 3 latmassOLD K OL P ˙ U Base K W Base K V Base K P ˙ U ˙ W ˙ V = P ˙ U ˙ W ˙ V
22 9 14 17 20 21 syl13anc K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U ˙ W ˙ V = P ˙ U ˙ W ˙ V
23 1 3 4 5 6 lhpmat K HL W H P A ¬ P ˙ W P ˙ W = 0 ˙
24 23 3adant3 K HL W H P A ¬ P ˙ W U V P ˙ W = 0 ˙
25 24 3ad2ant1 K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ W = 0 ˙
26 25 oveq1d K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ W ˙ U = 0 ˙ ˙ U
27 12 5 atbase U A U Base K
28 11 27 syl K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W U Base K
29 simp2r K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W U ˙ W
30 12 1 2 3 5 atmod4i2 K HL P A U Base K W Base K U ˙ W P ˙ W ˙ U = P ˙ U ˙ W
31 7 10 28 17 29 30 syl131anc K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ W ˙ U = P ˙ U ˙ W
32 12 2 4 olj02 K OL U Base K 0 ˙ ˙ U = U
33 9 28 32 syl2anc K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W 0 ˙ ˙ U = U
34 26 31 33 3eqtr3d K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U ˙ W = U
35 34 oveq1d K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U ˙ W ˙ V = U ˙ V
36 22 35 eqtr3d K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U ˙ W ˙ V = U ˙ V
37 simp3r K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V ˙ W
38 7 hllatd K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W K Lat
39 12 1 3 latleeqm2 K Lat V Base K W Base K V ˙ W W ˙ V = V
40 38 20 17 39 syl3anc K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V ˙ W W ˙ V = V
41 37 40 mpbid K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W W ˙ V = V
42 41 oveq2d K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U ˙ W ˙ V = P ˙ U ˙ V
43 simp13 K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W U V
44 hlatl K HL K AtLat
45 7 44 syl K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W K AtLat
46 3 4 5 atnem0 K AtLat U A V A U V U ˙ V = 0 ˙
47 45 11 18 46 syl3anc K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W U V U ˙ V = 0 ˙
48 43 47 mpbid K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W U ˙ V = 0 ˙
49 36 42 48 3eqtr3d K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U ˙ V = 0 ˙