Step |
Hyp |
Ref |
Expression |
1 |
|
lhp2at0.l |
|
2 |
|
lhp2at0.j |
|
3 |
|
lhp2at0.m |
|
4 |
|
lhp2at0.z |
|
5 |
|
lhp2at0.a |
|
6 |
|
lhp2at0.h |
|
7 |
|
simp11l |
|
8 |
|
hlol |
|
9 |
7 8
|
syl |
|
10 |
|
simp12l |
|
11 |
|
simp2l |
|
12 |
|
eqid |
|
13 |
12 2 5
|
hlatjcl |
|
14 |
7 10 11 13
|
syl3anc |
|
15 |
|
simp11r |
|
16 |
12 6
|
lhpbase |
|
17 |
15 16
|
syl |
|
18 |
|
simp3l |
|
19 |
12 5
|
atbase |
|
20 |
18 19
|
syl |
|
21 |
12 3
|
latmassOLD |
|
22 |
9 14 17 20 21
|
syl13anc |
|
23 |
1 3 4 5 6
|
lhpmat |
|
24 |
23
|
3adant3 |
|
25 |
24
|
3ad2ant1 |
|
26 |
25
|
oveq1d |
|
27 |
12 5
|
atbase |
|
28 |
11 27
|
syl |
|
29 |
|
simp2r |
|
30 |
12 1 2 3 5
|
atmod4i2 |
|
31 |
7 10 28 17 29 30
|
syl131anc |
|
32 |
12 2 4
|
olj02 |
|
33 |
9 28 32
|
syl2anc |
|
34 |
26 31 33
|
3eqtr3d |
|
35 |
34
|
oveq1d |
|
36 |
22 35
|
eqtr3d |
|
37 |
|
simp3r |
|
38 |
7
|
hllatd |
|
39 |
12 1 3
|
latleeqm2 |
|
40 |
38 20 17 39
|
syl3anc |
|
41 |
37 40
|
mpbid |
|
42 |
41
|
oveq2d |
|
43 |
|
simp13 |
|
44 |
|
hlatl |
|
45 |
7 44
|
syl |
|
46 |
3 4 5
|
atnem0 |
|
47 |
45 11 18 46
|
syl3anc |
|
48 |
43 47
|
mpbid |
|
49 |
36 42 48
|
3eqtr3d |
|