Metamath Proof Explorer


Theorem lhp2at0ne

Description: Inequality for joins with 2 different atoms (or an atom and zero) under co-atom W . (Contributed by NM, 28-Jul-2013)

Ref Expression
Hypotheses lhp2at0nle.l ˙ = K
lhp2at0nle.j ˙ = join K
lhp2at0nle.z 0 ˙ = 0. K
lhp2at0nle.a A = Atoms K
lhp2at0nle.h H = LHyp K
Assertion lhp2at0ne K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V P ˙ U Q ˙ V

Proof

Step Hyp Ref Expression
1 lhp2at0nle.l ˙ = K
2 lhp2at0nle.j ˙ = join K
3 lhp2at0nle.z 0 ˙ = 0. K
4 lhp2at0nle.a A = Atoms K
5 lhp2at0nle.h H = LHyp K
6 simp11 K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V K HL W H
7 simp12 K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V P A ¬ P ˙ W
8 simp3 K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V U V
9 simp2l K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V U A U = 0 ˙ U ˙ W
10 simp2r K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V V A V ˙ W
11 1 2 3 4 5 lhp2at0nle K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W ¬ V ˙ P ˙ U
12 6 7 8 9 10 11 syl311anc K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V ¬ V ˙ P ˙ U
13 simp11l K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V K HL
14 simp13 K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V Q A
15 simp2rl K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V V A
16 1 2 4 hlatlej2 K HL Q A V A V ˙ Q ˙ V
17 13 14 15 16 syl3anc K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V V ˙ Q ˙ V
18 17 adantr K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V P ˙ U = Q ˙ V V ˙ Q ˙ V
19 simpr K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V P ˙ U = Q ˙ V P ˙ U = Q ˙ V
20 18 19 breqtrrd K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V P ˙ U = Q ˙ V V ˙ P ˙ U
21 20 ex K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V P ˙ U = Q ˙ V V ˙ P ˙ U
22 21 necon3bd K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V ¬ V ˙ P ˙ U P ˙ U Q ˙ V
23 12 22 mpd K HL W H P A ¬ P ˙ W Q A U A U = 0 ˙ U ˙ W V A V ˙ W U V P ˙ U Q ˙ V