Metamath Proof Explorer


Theorem lhp2at0nle

Description: Inequality for 2 different atoms (or an atom and zero) under co-atom W . (Contributed by NM, 28-Jul-2013)

Ref Expression
Hypotheses lhp2at0nle.l ˙ = K
lhp2at0nle.j ˙ = join K
lhp2at0nle.z 0 ˙ = 0. K
lhp2at0nle.a A = Atoms K
lhp2at0nle.h H = LHyp K
Assertion lhp2at0nle K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W ¬ V ˙ P ˙ U

Proof

Step Hyp Ref Expression
1 lhp2at0nle.l ˙ = K
2 lhp2at0nle.j ˙ = join K
3 lhp2at0nle.z 0 ˙ = 0. K
4 lhp2at0nle.a A = Atoms K
5 lhp2at0nle.h H = LHyp K
6 simpl1 K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U A K HL W H P A ¬ P ˙ W U V
7 simpr K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U A U A
8 simpl2r K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U A U ˙ W
9 simpl3 K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U A V A V ˙ W
10 1 2 4 5 lhp2atnle K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W ¬ V ˙ P ˙ U
11 6 7 8 9 10 syl121anc K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U A ¬ V ˙ P ˙ U
12 simp3r K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W V ˙ W
13 simp12r K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W ¬ P ˙ W
14 nbrne2 V ˙ W ¬ P ˙ W V P
15 12 13 14 syl2anc K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W V P
16 15 neneqd K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W ¬ V = P
17 simp11l K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W K HL
18 hlatl K HL K AtLat
19 17 18 syl K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W K AtLat
20 simp3l K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W V A
21 simp12l K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W P A
22 1 4 atcmp K AtLat V A P A V ˙ P V = P
23 19 20 21 22 syl3anc K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W V ˙ P V = P
24 16 23 mtbird K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W ¬ V ˙ P
25 24 adantr K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U = 0 ˙ ¬ V ˙ P
26 oveq2 U = 0 ˙ P ˙ U = P ˙ 0 ˙
27 hlol K HL K OL
28 17 27 syl K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W K OL
29 eqid Base K = Base K
30 29 4 atbase P A P Base K
31 21 30 syl K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W P Base K
32 29 2 3 olj01 K OL P Base K P ˙ 0 ˙ = P
33 28 31 32 syl2anc K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W P ˙ 0 ˙ = P
34 26 33 sylan9eqr K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U = 0 ˙ P ˙ U = P
35 34 breq2d K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U = 0 ˙ V ˙ P ˙ U V ˙ P
36 25 35 mtbird K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U = 0 ˙ ¬ V ˙ P ˙ U
37 simp2l K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W U A U = 0 ˙
38 11 36 37 mpjaodan K HL W H P A ¬ P ˙ W U V U A U = 0 ˙ U ˙ W V A V ˙ W ¬ V ˙ P ˙ U