Metamath Proof Explorer


Theorem lhp2atne

Description: Inequality for joins with 2 different atoms under co-atom W . (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses lhp2atnle.l ˙ = K
lhp2atnle.j ˙ = join K
lhp2atnle.a A = Atoms K
lhp2atnle.h H = LHyp K
Assertion lhp2atne K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V P ˙ U Q ˙ V

Proof

Step Hyp Ref Expression
1 lhp2atnle.l ˙ = K
2 lhp2atnle.j ˙ = join K
3 lhp2atnle.a A = Atoms K
4 lhp2atnle.h H = LHyp K
5 simp11 K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V K HL W H
6 simp12 K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V P A ¬ P ˙ W
7 simp3 K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V U V
8 simp2l K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V U A U ˙ W
9 simp2r K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V V A V ˙ W
10 1 2 3 4 lhp2atnle K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W ¬ V ˙ P ˙ U
11 5 6 7 8 9 10 syl311anc K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V ¬ V ˙ P ˙ U
12 simp11l K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V K HL
13 simp13 K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V Q A
14 simp2rl K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V V A
15 1 2 3 hlatlej2 K HL Q A V A V ˙ Q ˙ V
16 12 13 14 15 syl3anc K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V V ˙ Q ˙ V
17 16 adantr K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V P ˙ U = Q ˙ V V ˙ Q ˙ V
18 simpr K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V P ˙ U = Q ˙ V P ˙ U = Q ˙ V
19 17 18 breqtrrd K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V P ˙ U = Q ˙ V V ˙ P ˙ U
20 19 ex K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V P ˙ U = Q ˙ V V ˙ P ˙ U
21 20 necon3bd K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V ¬ V ˙ P ˙ U P ˙ U Q ˙ V
22 11 21 mpd K HL W H P A ¬ P ˙ W Q A U A U ˙ W V A V ˙ W U V P ˙ U Q ˙ V