Metamath Proof Explorer


Theorem lhp2atnle

Description: Inequality for 2 different atoms under co-atom W . (Contributed by NM, 17-Jun-2013)

Ref Expression
Hypotheses lhp2atnle.l ˙ = K
lhp2atnle.j ˙ = join K
lhp2atnle.a A = Atoms K
lhp2atnle.h H = LHyp K
Assertion lhp2atnle K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W ¬ V ˙ P ˙ U

Proof

Step Hyp Ref Expression
1 lhp2atnle.l ˙ = K
2 lhp2atnle.j ˙ = join K
3 lhp2atnle.a A = Atoms K
4 lhp2atnle.h H = LHyp K
5 simp11l K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W K HL
6 hlatl K HL K AtLat
7 5 6 syl K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W K AtLat
8 simp3l K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V A
9 eqid 0. K = 0. K
10 9 3 atn0 K AtLat V A V 0. K
11 7 8 10 syl2anc K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V 0. K
12 5 hllatd K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W K Lat
13 eqid Base K = Base K
14 13 3 atbase V A V Base K
15 8 14 syl K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V Base K
16 simp12l K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P A
17 simp2l K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W U A
18 13 2 3 hlatjcl K HL P A U A P ˙ U Base K
19 5 16 17 18 syl3anc K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U Base K
20 eqid meet K = meet K
21 13 1 20 latleeqm2 K Lat V Base K P ˙ U Base K V ˙ P ˙ U P ˙ U meet K V = V
22 12 15 19 21 syl3anc K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V ˙ P ˙ U P ˙ U meet K V = V
23 1 2 20 9 3 4 lhp2at0 K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U meet K V = 0. K
24 eqeq1 P ˙ U meet K V = V P ˙ U meet K V = 0. K V = 0. K
25 23 24 syl5ibcom K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W P ˙ U meet K V = V V = 0. K
26 22 25 sylbid K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V ˙ P ˙ U V = 0. K
27 26 necon3ad K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W V 0. K ¬ V ˙ P ˙ U
28 11 27 mpd K HL W H P A ¬ P ˙ W U V U A U ˙ W V A V ˙ W ¬ V ˙ P ˙ U