Metamath Proof Explorer


Theorem lhpat2

Description: Create an atom under a co-atom. Part of proof of Lemma B in Crawley p. 112. (Contributed by NM, 21-Nov-2012)

Ref Expression
Hypotheses lhpat.l ˙ = K
lhpat.j ˙ = join K
lhpat.m ˙ = meet K
lhpat.a A = Atoms K
lhpat.h H = LHyp K
lhpat2.r R = P ˙ Q ˙ W
Assertion lhpat2 K HL W H P A ¬ P ˙ W Q A P Q R A

Proof

Step Hyp Ref Expression
1 lhpat.l ˙ = K
2 lhpat.j ˙ = join K
3 lhpat.m ˙ = meet K
4 lhpat.a A = Atoms K
5 lhpat.h H = LHyp K
6 lhpat2.r R = P ˙ Q ˙ W
7 1 2 3 4 5 lhpat K HL W H P A ¬ P ˙ W Q A P Q P ˙ Q ˙ W A
8 6 7 eqeltrid K HL W H P A ¬ P ˙ W Q A P Q R A