Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
lhpexle
Next ⟩
lhpexnle
Metamath Proof Explorer
Ascii
Unicode
Theorem
lhpexle
Description:
There exists an atom under a co-atom.
(Contributed by
NM
, 26-Apr-2013)
Ref
Expression
Hypotheses
lhp2a.l
⊢
≤
˙
=
≤
K
lhp2a.a
⊢
A
=
Atoms
⁡
K
lhp2a.h
⊢
H
=
LHyp
⁡
K
Assertion
lhpexle
⊢
K
∈
HL
∧
W
∈
H
→
∃
p
∈
A
p
≤
˙
W
Proof
Step
Hyp
Ref
Expression
1
lhp2a.l
⊢
≤
˙
=
≤
K
2
lhp2a.a
⊢
A
=
Atoms
⁡
K
3
lhp2a.h
⊢
H
=
LHyp
⁡
K
4
simpl
⊢
K
∈
HL
∧
W
∈
H
→
K
∈
HL
5
eqid
⊢
Base
K
=
Base
K
6
5
3
lhpbase
⊢
W
∈
H
→
W
∈
Base
K
7
6
adantl
⊢
K
∈
HL
∧
W
∈
H
→
W
∈
Base
K
8
eqid
⊢
0.
⁡
K
=
0.
⁡
K
9
8
3
lhpn0
⊢
K
∈
HL
∧
W
∈
H
→
W
≠
0.
⁡
K
10
5
1
8
2
atle
⊢
K
∈
HL
∧
W
∈
Base
K
∧
W
≠
0.
⁡
K
→
∃
p
∈
A
p
≤
˙
W
11
4
7
9
10
syl3anc
⊢
K
∈
HL
∧
W
∈
H
→
∃
p
∈
A
p
≤
˙
W