Metamath Proof Explorer


Theorem lhpexle

Description: There exists an atom under a co-atom. (Contributed by NM, 26-Apr-2013)

Ref Expression
Hypotheses lhp2a.l ˙ = K
lhp2a.a A = Atoms K
lhp2a.h H = LHyp K
Assertion lhpexle K HL W H p A p ˙ W

Proof

Step Hyp Ref Expression
1 lhp2a.l ˙ = K
2 lhp2a.a A = Atoms K
3 lhp2a.h H = LHyp K
4 simpl K HL W H K HL
5 eqid Base K = Base K
6 5 3 lhpbase W H W Base K
7 6 adantl K HL W H W Base K
8 eqid 0. K = 0. K
9 8 3 lhpn0 K HL W H W 0. K
10 5 1 8 2 atle K HL W Base K W 0. K p A p ˙ W
11 4 7 9 10 syl3anc K HL W H p A p ˙ W