Metamath Proof Explorer


Theorem lhpexle1

Description: There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013)

Ref Expression
Hypotheses lhpex1.l ˙ = K
lhpex1.a A = Atoms K
lhpex1.h H = LHyp K
Assertion lhpexle1 K HL W H p A p ˙ W p X

Proof

Step Hyp Ref Expression
1 lhpex1.l ˙ = K
2 lhpex1.a A = Atoms K
3 lhpex1.h H = LHyp K
4 1 2 3 lhpexle K HL W H p A p ˙ W
5 tru
6 5 jctr p ˙ W p ˙ W
7 6 reximi p A p ˙ W p A p ˙ W
8 4 7 syl K HL W H p A p ˙ W
9 simpll K HL W H X A X ˙ W K HL
10 simprl K HL W H X A X ˙ W X A
11 eqid Base K = Base K
12 11 3 lhpbase W H W Base K
13 12 ad2antlr K HL W H X A X ˙ W W Base K
14 eqid < K = < K
15 1 14 2 3 lhplt K HL W H X A X ˙ W X < K W
16 11 14 2 2atlt K HL X A W Base K X < K W p A p X p < K W
17 9 10 13 15 16 syl31anc K HL W H X A X ˙ W p A p X p < K W
18 simp3r K HL W H X A X ˙ W p A p X p < K W p < K W
19 simp1ll K HL W H X A X ˙ W p A p X p < K W K HL
20 simp2 K HL W H X A X ˙ W p A p X p < K W p A
21 simp1lr K HL W H X A X ˙ W p A p X p < K W W H
22 1 14 pltle K HL p A W H p < K W p ˙ W
23 19 20 21 22 syl3anc K HL W H X A X ˙ W p A p X p < K W p < K W p ˙ W
24 18 23 mpd K HL W H X A X ˙ W p A p X p < K W p ˙ W
25 trud K HL W H X A X ˙ W p A p X p < K W
26 simp3l K HL W H X A X ˙ W p A p X p < K W p X
27 24 25 26 3jca K HL W H X A X ˙ W p A p X p < K W p ˙ W p X
28 27 3expia K HL W H X A X ˙ W p A p X p < K W p ˙ W p X
29 28 reximdva K HL W H X A X ˙ W p A p X p < K W p A p ˙ W p X
30 17 29 mpd K HL W H X A X ˙ W p A p ˙ W p X
31 8 30 lhpexle1lem K HL W H p A p ˙ W p X
32 3simpb p ˙ W p X p ˙ W p X
33 32 reximi p A p ˙ W p X p A p ˙ W p X
34 31 33 syl K HL W H p A p ˙ W p X