Step |
Hyp |
Ref |
Expression |
1 |
|
lhpex1.l |
|
2 |
|
lhpex1.a |
|
3 |
|
lhpex1.h |
|
4 |
1 2 3
|
lhpexle2 |
|
5 |
|
3anass |
|
6 |
5
|
rexbii |
|
7 |
4 6
|
sylib |
|
8 |
1 2 3
|
lhpexle2 |
|
9 |
8
|
adantr |
|
10 |
|
3anass |
|
11 |
10
|
rexbii |
|
12 |
9 11
|
sylib |
|
13 |
1 2 3
|
lhpexle2 |
|
14 |
|
3anass |
|
15 |
14
|
rexbii |
|
16 |
13 15
|
sylib |
|
17 |
16
|
3ad2ant1 |
|
18 |
|
simpl1 |
|
19 |
|
simpl3l |
|
20 |
|
simpl2l |
|
21 |
|
simprl |
|
22 |
|
simpl3r |
|
23 |
|
simpl2r |
|
24 |
|
simprr |
|
25 |
1 2 3
|
lhpexle3lem |
|
26 |
18 19 20 21 22 23 24 25
|
syl133anc |
|
27 |
|
df-3an |
|
28 |
27
|
anbi2i |
|
29 |
|
3anass |
|
30 |
28 29
|
bitr4i |
|
31 |
30
|
rexbii |
|
32 |
26 31
|
sylib |
|
33 |
17 32
|
lhpexle1lem |
|
34 |
|
an31 |
|
35 |
34
|
anbi2i |
|
36 |
|
3anass |
|
37 |
35 29 36
|
3bitr4i |
|
38 |
37
|
rexbii |
|
39 |
33 38
|
sylib |
|
40 |
39
|
3expa |
|
41 |
12 40
|
lhpexle1lem |
|
42 |
|
an32 |
|
43 |
42
|
anbi2i |
|
44 |
|
3anass |
|
45 |
43 36 44
|
3bitr4i |
|
46 |
45
|
rexbii |
|
47 |
41 46
|
sylib |
|
48 |
7 47
|
lhpexle1lem |
|
49 |
|
df-3an |
|
50 |
49
|
anbi2i |
|
51 |
44 50
|
bitr4i |
|
52 |
51
|
rexbii |
|
53 |
48 52
|
sylib |
|