Metamath Proof Explorer


Theorem lhpexlt

Description: There exists an atom less than a co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses lhpatltex.s < ˙ = < K
lhpatltex.a A = Atoms K
lhpatltex.h H = LHyp K
Assertion lhpexlt K HL W H p A p < ˙ W

Proof

Step Hyp Ref Expression
1 lhpatltex.s < ˙ = < K
2 lhpatltex.a A = Atoms K
3 lhpatltex.h H = LHyp K
4 simpl K HL W H K HL
5 eqid Base K = Base K
6 5 3 lhpbase W H W Base K
7 6 adantl K HL W H W Base K
8 eqid 1. K = 1. K
9 eqid K = K
10 8 9 3 lhp1cvr K HL W H W K 1. K
11 5 1 8 9 2 1cvratex K HL W Base K W K 1. K p A p < ˙ W
12 4 7 10 11 syl3anc K HL W H p A p < ˙ W