Metamath Proof Explorer


Theorem lhpexnle

Description: There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013)

Ref Expression
Hypotheses lhp2a.l ˙ = K
lhp2a.a A = Atoms K
lhp2a.h H = LHyp K
Assertion lhpexnle K HL W H p A ¬ p ˙ W

Proof

Step Hyp Ref Expression
1 lhp2a.l ˙ = K
2 lhp2a.a A = Atoms K
3 lhp2a.h H = LHyp K
4 eqid 1. K = 1. K
5 eqid K = K
6 4 5 3 lhp1cvr K HL W H W K 1. K
7 simpl K HL W H K HL
8 eqid Base K = Base K
9 8 3 lhpbase W H W Base K
10 9 adantl K HL W H W Base K
11 hlop K HL K OP
12 8 4 op1cl K OP 1. K Base K
13 11 12 syl K HL 1. K Base K
14 13 adantr K HL W H 1. K Base K
15 eqid join K = join K
16 8 1 15 5 2 cvrval3 K HL W Base K 1. K Base K W K 1. K p A ¬ p ˙ W W join K p = 1. K
17 7 10 14 16 syl3anc K HL W H W K 1. K p A ¬ p ˙ W W join K p = 1. K
18 6 17 mpbid K HL W H p A ¬ p ˙ W W join K p = 1. K
19 simpl ¬ p ˙ W W join K p = 1. K ¬ p ˙ W
20 19 reximi p A ¬ p ˙ W W join K p = 1. K p A ¬ p ˙ W
21 18 20 syl K HL W H p A ¬ p ˙ W