Metamath Proof Explorer


Theorem lhpj1

Description: The join of a co-atom (hyperplane) and an element not under it is the lattice unit. (Contributed by NM, 7-Dec-2012)

Ref Expression
Hypotheses lhpj1.b B = Base K
lhpj1.l ˙ = K
lhpj1.j ˙ = join K
lhpj1.u 1 ˙ = 1. K
lhpj1.h H = LHyp K
Assertion lhpj1 K HL W H X B ¬ X ˙ W W ˙ X = 1 ˙

Proof

Step Hyp Ref Expression
1 lhpj1.b B = Base K
2 lhpj1.l ˙ = K
3 lhpj1.j ˙ = join K
4 lhpj1.u 1 ˙ = 1. K
5 lhpj1.h H = LHyp K
6 simpll K HL W H X B K HL
7 simpr K HL W H X B X B
8 1 5 lhpbase W H W B
9 8 ad2antlr K HL W H X B W B
10 eqid Atoms K = Atoms K
11 1 2 10 hlrelat2 K HL X B W B ¬ X ˙ W p Atoms K p ˙ X ¬ p ˙ W
12 6 7 9 11 syl3anc K HL W H X B ¬ X ˙ W p Atoms K p ˙ X ¬ p ˙ W
13 simp1l K HL W H X B p Atoms K p ˙ X ¬ p ˙ W K HL W H
14 simp2 K HL W H X B p Atoms K p ˙ X ¬ p ˙ W p Atoms K
15 simp3r K HL W H X B p Atoms K p ˙ X ¬ p ˙ W ¬ p ˙ W
16 2 3 4 10 5 lhpjat1 K HL W H p Atoms K ¬ p ˙ W W ˙ p = 1 ˙
17 13 14 15 16 syl12anc K HL W H X B p Atoms K p ˙ X ¬ p ˙ W W ˙ p = 1 ˙
18 simp3l K HL W H X B p Atoms K p ˙ X ¬ p ˙ W p ˙ X
19 simp1ll K HL W H X B p Atoms K p ˙ X ¬ p ˙ W K HL
20 19 hllatd K HL W H X B p Atoms K p ˙ X ¬ p ˙ W K Lat
21 1 10 atbase p Atoms K p B
22 21 3ad2ant2 K HL W H X B p Atoms K p ˙ X ¬ p ˙ W p B
23 simp1r K HL W H X B p Atoms K p ˙ X ¬ p ˙ W X B
24 9 3ad2ant1 K HL W H X B p Atoms K p ˙ X ¬ p ˙ W W B
25 1 2 3 latjlej2 K Lat p B X B W B p ˙ X W ˙ p ˙ W ˙ X
26 20 22 23 24 25 syl13anc K HL W H X B p Atoms K p ˙ X ¬ p ˙ W p ˙ X W ˙ p ˙ W ˙ X
27 18 26 mpd K HL W H X B p Atoms K p ˙ X ¬ p ˙ W W ˙ p ˙ W ˙ X
28 17 27 eqbrtrrd K HL W H X B p Atoms K p ˙ X ¬ p ˙ W 1 ˙ ˙ W ˙ X
29 hlop K HL K OP
30 19 29 syl K HL W H X B p Atoms K p ˙ X ¬ p ˙ W K OP
31 1 3 latjcl K Lat W B X B W ˙ X B
32 20 24 23 31 syl3anc K HL W H X B p Atoms K p ˙ X ¬ p ˙ W W ˙ X B
33 1 2 4 op1le K OP W ˙ X B 1 ˙ ˙ W ˙ X W ˙ X = 1 ˙
34 30 32 33 syl2anc K HL W H X B p Atoms K p ˙ X ¬ p ˙ W 1 ˙ ˙ W ˙ X W ˙ X = 1 ˙
35 28 34 mpbid K HL W H X B p Atoms K p ˙ X ¬ p ˙ W W ˙ X = 1 ˙
36 35 rexlimdv3a K HL W H X B p Atoms K p ˙ X ¬ p ˙ W W ˙ X = 1 ˙
37 12 36 sylbid K HL W H X B ¬ X ˙ W W ˙ X = 1 ˙
38 37 impr K HL W H X B ¬ X ˙ W W ˙ X = 1 ˙