Metamath Proof Explorer


Theorem lhpjat1

Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpjat.l ˙ = K
lhpjat.j ˙ = join K
lhpjat.u 1 ˙ = 1. K
lhpjat.a A = Atoms K
lhpjat.h H = LHyp K
Assertion lhpjat1 K HL W H P A ¬ P ˙ W W ˙ P = 1 ˙

Proof

Step Hyp Ref Expression
1 lhpjat.l ˙ = K
2 lhpjat.j ˙ = join K
3 lhpjat.u 1 ˙ = 1. K
4 lhpjat.a A = Atoms K
5 lhpjat.h H = LHyp K
6 simpll K HL W H P A ¬ P ˙ W K HL
7 eqid Base K = Base K
8 7 5 lhpbase W H W Base K
9 8 ad2antlr K HL W H P A ¬ P ˙ W W Base K
10 simprl K HL W H P A ¬ P ˙ W P A
11 eqid K = K
12 3 11 5 lhp1cvr K HL W H W K 1 ˙
13 12 adantr K HL W H P A ¬ P ˙ W W K 1 ˙
14 simprr K HL W H P A ¬ P ˙ W ¬ P ˙ W
15 7 1 2 3 11 4 1cvrjat K HL W Base K P A W K 1 ˙ ¬ P ˙ W W ˙ P = 1 ˙
16 6 9 10 13 14 15 syl32anc K HL W H P A ¬ P ˙ W W ˙ P = 1 ˙