Metamath Proof Explorer


Theorem lhplt

Description: An atom under a co-atom is strictly less than it. TODO: is this needed? (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses lhplt.l ˙ = K
lhplt.s < ˙ = < K
lhplt.a A = Atoms K
lhplt.h H = LHyp K
Assertion lhplt K HL W H P A P ˙ W P < ˙ W

Proof

Step Hyp Ref Expression
1 lhplt.l ˙ = K
2 lhplt.s < ˙ = < K
3 lhplt.a A = Atoms K
4 lhplt.h H = LHyp K
5 simpll K HL W H P A P ˙ W K HL
6 simprl K HL W H P A P ˙ W P A
7 eqid Base K = Base K
8 7 4 lhpbase W H W Base K
9 8 ad2antlr K HL W H P A P ˙ W W Base K
10 eqid 1. K = 1. K
11 eqid K = K
12 10 11 4 lhp1cvr K HL W H W K 1. K
13 12 adantr K HL W H P A P ˙ W W K 1. K
14 simprr K HL W H P A P ˙ W P ˙ W
15 7 1 2 10 11 3 1cvratlt K HL P A W Base K W K 1. K P ˙ W P < ˙ W
16 5 6 9 13 14 15 syl32anc K HL W H P A P ˙ W P < ˙ W