Metamath Proof Explorer


Theorem lhpmcvr

Description: The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012)

Ref Expression
Hypotheses lhpmcvr.b B = Base K
lhpmcvr.l ˙ = K
lhpmcvr.m ˙ = meet K
lhpmcvr.c C = K
lhpmcvr.h H = LHyp K
Assertion lhpmcvr K HL W H X B ¬ X ˙ W X ˙ W C X

Proof

Step Hyp Ref Expression
1 lhpmcvr.b B = Base K
2 lhpmcvr.l ˙ = K
3 lhpmcvr.m ˙ = meet K
4 lhpmcvr.c C = K
5 lhpmcvr.h H = LHyp K
6 hllat K HL K Lat
7 6 ad2antrr K HL W H X B ¬ X ˙ W K Lat
8 simprl K HL W H X B ¬ X ˙ W X B
9 1 5 lhpbase W H W B
10 9 ad2antlr K HL W H X B ¬ X ˙ W W B
11 1 3 latmcom K Lat X B W B X ˙ W = W ˙ X
12 7 8 10 11 syl3anc K HL W H X B ¬ X ˙ W X ˙ W = W ˙ X
13 eqid 1. K = 1. K
14 13 4 5 lhp1cvr K HL W H W C 1. K
15 14 adantr K HL W H X B ¬ X ˙ W W C 1. K
16 eqid join K = join K
17 1 2 16 13 5 lhpj1 K HL W H X B ¬ X ˙ W W join K X = 1. K
18 15 17 breqtrrd K HL W H X B ¬ X ˙ W W C W join K X
19 simpll K HL W H X B ¬ X ˙ W K HL
20 1 16 3 4 cvrexch K HL W B X B W ˙ X C X W C W join K X
21 19 10 8 20 syl3anc K HL W H X B ¬ X ˙ W W ˙ X C X W C W join K X
22 18 21 mpbird K HL W H X B ¬ X ˙ W W ˙ X C X
23 12 22 eqbrtrd K HL W H X B ¬ X ˙ W X ˙ W C X