Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
lhpn0
Next ⟩
lhpexle
Metamath Proof Explorer
Ascii
Unicode
Theorem
lhpn0
Description:
A co-atom is nonzero. TODO: is this needed?
(Contributed by
NM
, 26-Apr-2013)
Ref
Expression
Hypotheses
lhpne0.z
⊢
0
˙
=
0.
⁡
K
lhpne0.h
⊢
H
=
LHyp
⁡
K
Assertion
lhpn0
⊢
K
∈
HL
∧
W
∈
H
→
W
≠
0
˙
Proof
Step
Hyp
Ref
Expression
1
lhpne0.z
⊢
0
˙
=
0.
⁡
K
2
lhpne0.h
⊢
H
=
LHyp
⁡
K
3
eqid
⊢
<
K
=
<
K
4
3
1
2
lhp0lt
⊢
K
∈
HL
∧
W
∈
H
→
0
˙
<
K
W
5
simpl
⊢
K
∈
HL
∧
W
∈
H
→
K
∈
HL
6
hlop
⊢
K
∈
HL
→
K
∈
OP
7
eqid
⊢
Base
K
=
Base
K
8
7
1
op0cl
⊢
K
∈
OP
→
0
˙
∈
Base
K
9
6
8
syl
⊢
K
∈
HL
→
0
˙
∈
Base
K
10
9
adantr
⊢
K
∈
HL
∧
W
∈
H
→
0
˙
∈
Base
K
11
simpr
⊢
K
∈
HL
∧
W
∈
H
→
W
∈
H
12
3
pltne
⊢
K
∈
HL
∧
0
˙
∈
Base
K
∧
W
∈
H
→
0
˙
<
K
W
→
0
˙
≠
W
13
5
10
11
12
syl3anc
⊢
K
∈
HL
∧
W
∈
H
→
0
˙
<
K
W
→
0
˙
≠
W
14
4
13
mpd
⊢
K
∈
HL
∧
W
∈
H
→
0
˙
≠
W
15
14
necomd
⊢
K
∈
HL
∧
W
∈
H
→
W
≠
0
˙