Metamath Proof Explorer


Theorem lhpn0

Description: A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013)

Ref Expression
Hypotheses lhpne0.z 0 ˙ = 0. K
lhpne0.h H = LHyp K
Assertion lhpn0 K HL W H W 0 ˙

Proof

Step Hyp Ref Expression
1 lhpne0.z 0 ˙ = 0. K
2 lhpne0.h H = LHyp K
3 eqid < K = < K
4 3 1 2 lhp0lt K HL W H 0 ˙ < K W
5 simpl K HL W H K HL
6 hlop K HL K OP
7 eqid Base K = Base K
8 7 1 op0cl K OP 0 ˙ Base K
9 6 8 syl K HL 0 ˙ Base K
10 9 adantr K HL W H 0 ˙ Base K
11 simpr K HL W H W H
12 3 pltne K HL 0 ˙ Base K W H 0 ˙ < K W 0 ˙ W
13 5 10 11 12 syl3anc K HL W H 0 ˙ < K W 0 ˙ W
14 4 13 mpd K HL W H 0 ˙ W
15 14 necomd K HL W H W 0 ˙