Metamath Proof Explorer


Theorem lhpocnel

Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses lhpocnel.l ˙ = K
lhpocnel.o ˙ = oc K
lhpocnel.a A = Atoms K
lhpocnel.h H = LHyp K
Assertion lhpocnel K HL W H ˙ W A ¬ ˙ W ˙ W

Proof

Step Hyp Ref Expression
1 lhpocnel.l ˙ = K
2 lhpocnel.o ˙ = oc K
3 lhpocnel.a A = Atoms K
4 lhpocnel.h H = LHyp K
5 2 3 4 lhpocat K HL W H ˙ W A
6 1 2 4 lhpocnle K HL W H ¬ ˙ W ˙ W
7 5 6 jca K HL W H ˙ W A ¬ ˙ W ˙ W