Metamath Proof Explorer


Theorem lhpocnel2

Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses lhpocnel2.l ˙ = K
lhpocnel2.a A = Atoms K
lhpocnel2.h H = LHyp K
lhpocnel2.p P = oc K W
Assertion lhpocnel2 K HL W H P A ¬ P ˙ W

Proof

Step Hyp Ref Expression
1 lhpocnel2.l ˙ = K
2 lhpocnel2.a A = Atoms K
3 lhpocnel2.h H = LHyp K
4 lhpocnel2.p P = oc K W
5 eqid oc K = oc K
6 1 5 2 3 lhpocnel K HL W H oc K W A ¬ oc K W ˙ W
7 4 eleq1i P A oc K W A
8 4 breq1i P ˙ W oc K W ˙ W
9 8 notbii ¬ P ˙ W ¬ oc K W ˙ W
10 7 9 anbi12i P A ¬ P ˙ W oc K W A ¬ oc K W ˙ W
11 6 10 sylibr K HL W H P A ¬ P ˙ W